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Abstract

In the past few years, a challenge has manifested to quantify the
amount of communication required to simulate entangled quantum sys-
tems by classical information.

On one side of the spectrum, there are quantum systems with one
EPR-pair: Different approaches with different restrictions to the clas-
sical system have been investigated. Upper bounds for the amount of
communication needed to simulate such a pair have been determined.
For exactly simulating an EPR-pair (i. e., with a deterministic proto-
col), a result by Brassard, Cleve and Tapp in 1999 is known, that 8
bit suffice for general von Neumann measurements. Where people are
interested in the expected amount of communication, the bounds are
improving on a yearly basis. 1.19 bit expected communication could
be shown in 1999 by Cerf, Gisin and Massar.

The opposite side of the spectrum reveals quantum systems with
n EPR-pairs. Bounds for the expected amount are steadily improv-
ing at the moment and reached the almost optimal upper bound of
n2" for POV-measurements. For the more specific von Neumann mea-
surements an exponential amount of information is needed in order to
exactly simulate the quantum system.

In this paper we show the precise amount (instead of a bound) of
communication needed to simulate a bipartite quantum scenario in re-
lation of a graph coloring problem. Instead of an asymptotical bound,
we conjecture an lower bound on the amount of communication needed
for exact simulation of a n-qubit bipartite quantum system by consid-
ering combinatorics of finite sets.

Keywords. Quantum entanglement, EPR-paradox, Bell-inequality, non-
locality, classical simulation, quantifying entanglement, communication
complexity, coloring graphs, finite set theory.

1 Introduction

In 1935, Einstein, Podolsky, and Rosen described a Gedanken-experiment
which in their opinion disclosed a paradoxical consequence of quantum me-
chanics. They predicted that when measurements are carried out on certain
particles, (EPR pairs), their outcome is perfectly correlated even when the
measurement events are space-like separated.

In 1964, John S. Bell could generally show that certain separated quan-
tum systems cannot be classically simulated by using only hidden local vari-
ables and without any communication [Bell 64]. This motivated the following
question: For a given a quantum scenario, what is the amount of informa-
tion that must be exchanged for perfectly simulating it? It was shown by
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Brassard, Cleve and Tapp in 1999, that surprisingly, a small number of bits
is sufficient in some cases even though the number of possible measurement
bases is uncountably infinite [Brassard 99].

There exist several quantum scenarios, such as the Deutsch-Jozsa algo-
rithm [DeutschJozsa 92], for which the classical simulation is not as powerful
as the algorithm in the quantum quantum domain. In this study, the analysis
of a so-called pseudo-telepathy game (which is closely related to the afore-
mentioned questions) leads to problems of graph theory and combinatorics
of finite sets. Finally, we can conclude a very strong relationship between
quantum entanglement and the chromatic number of certain graphs which
reveals another connection between the quantum and the classical domain.

2 Entanglement and Non-Locality

We consider two quantum particles (e. g., a pair of photons or electrons).
We can determine bipartite quantum systems by applying unitary transfor-
mation to either one or both quantum states in the ground configuration.
Quantum mechanics claims the existence of certain scenarios that lead to
correlation between the two subsystems, namely entanglement. Bell’s the-
orem in 1964 showed that it is not always possible to simulate bipartite
quantum measurement scenarios with a classical system, if the measure-
ment events are space-like separated [Bell 64]. Such quantum states are of
great interest, since the classical counterpart simply does not exist.

A quantum system of n qubits can generally be described as a superposi-
tion of basis states |0...00),|0...01),...,[1...11). Each state is present
with a certain complex probability amplitude «; (i. e., the probability to
measure the state |4 ) is |o;|?) and can be written as follows:

2" —1

Ty= 3 aili)

1=0

The probability amplitudes of a quantum state satisfy Z?ial |o;|? = 1. If the
result of a measurement is i (with probability |o;|?), the superposition | T')
collapsed into the basis state | i ). Therefore we lose the quantum information
and ’only’ get n bit of classical information from it.

As a first example we consider the quantum state (we write |ij ) instead
of |i) ®|j), where ® is the tensor product of the two subsystems)

1 1 1 1
|FAB)—§|00>—§\01>+§|10)—§|11)
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We can easily rewrite it as follows

1 1
(0 +10)e—(10)-11)
Quantum states with such a product representation are called separable and
can be treated completely independently (i. e., the probability distributions
corresponding to measurements applied to each particle are statistically in-
dependent). However, we are interested in entangled states. The singlet state
is one of the four Bell states:

ITaB) =

1 1

w7 = 5l01) —
There exist no quantum states |94 ) and |1 ) such that | ¥~ ) = [94) ®
| 9B ); such a state is called entangled. By measuring each subsystem in cer-
tain bases, we will have correlated results, even though the two measurement
events are space-like separated. Our goal is now to quantify the amount of
information we need to exactly simulate quantum entanglement in special
quantum scenarios.

[10)

3 Classical Simulation

Brassard, Cleve, and Tapp showed that with von Neumann-measurements of
Bell states can be perfectly simulated classically with a local hidden variable'
scheme augmented with eight bits of communication [Brassard 99]. This re-
sult is somewhat surprising since the number of possible measurements is
infinitely large. Cerf, Gisin, and Massar showed in 1999 that on average
1.19 bit of communication suffice to achieve an exact classical simulation of
quantum teleportation [Cerf 99]. The bounded-communication model and
the average-communication model are the two different models considered
with investigating simulation of quantum entanglement with respect to hid-
den local variables.

There is another challenge in determining the amount of information
needed for simulation of systems with more than one qubit with respect
to coherent measurements, i. e., not only measuring a subsystem. In the
bounded-communication model Brassard et al. showed that ¢2™ bit of com-
munication are needed, for some constant ¢ [Brassard 99]. Their proof re-
duces a quantum scenario to a restricted version of the inequality prob-
lem in [Buhr 98] as a communication complexity problem. Their result

Local hidden variable schemes are introduced and defined in [Brassard 99].
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relies on a strong mathematical theorem from Frankl and Rodl from 1987
[FranklRG6d1 87]. The same expected amount of information is need in the
average bounded model for n qubits.

In 2000, Massar, Bacon, Cerf and Cleve [Massar 2000] improved Steiner’s
[Steiner 99] 22 bit bound from 1999 and could show that simulating a Bell
state without local hidden variables can be done with 20 bits on average.
They showed as well that Q(n2") bit of communication on average are
needed to exactly simulate an n-qubit system without local hidden variables
with the more general positive operator measurements (POVMs).

In this paper we will show a lower bound on the communication needed
to exactly simulate n Bell states with a constant amount of local hidden
variables in terms of graph coloring problem. Furthermore we conjecture
how many bits of information we need in order to exactly simulate quantum
entanglement for more than one qubit.

4 Quantum Pseudo-Telepathy: Previous Results

We will briefly describe the quantum scenario as examined in [Brassard 99]
and determine their results. Consider the case of 7 Bell states

i 1 Ny
[00)i5 = 5 2. 1)
ic{0,1}7

as a resource of quantum entanglement. Furthermore, we determine a quan-

tum measurement scenario (| ®1 )% My, Mp) on @ qubits, with |[M4| =

Mpg| = 22" Due to their connection with the algorithm in [DeutschJozsa 92],
M4 and Mp are called Deutsch-Jozsa measurements. First, we use the uni-
tary transformation that maps |i) to (—1)* (z; denotes the i-th bit of the
parameter z € My or z € Mp) acting as a phase shift. Moreover, the n-
qubit Hadamard transformation which maps | i) to \/% Yjeoy (=1)#5),
where i - j is the inner product of the two n-bit strings ¢ and j. Finally we
measure in the computational basis {|i) : i € {0,1}"}, yielding an outcome
in {0,1}7.

One can verify that for the measurement © € My, y € Mp withz =y
the output of the measurements a and b are equal. If the Hamming-distance?
is 2771, the probability that a is equal to b is 0.

2The Hamming-distance D (z,y) of two binary strings z,y is the number of bits in
which z, y differ.
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We can derive the above results by considering the resulting quantum
state after applying both unitary operations and before the measurement

1 .
= Y (—)E e ) k) (1)
/237 o B
Jk,i€{0,1}7

If z = y, then the state (1) becomes \/% > icqo3n [)]1) end therefore
Pla = b|lz = y] = 1. If the Hamming-distance between = and y is 2° 1 = n/2,
then the probability amplitude of any ket of the form |j)|j) of state (1)
becomes 0, and so the Pla = b|Dg(z,y) =n/2] =0.

We define now the pseudo-telepathy game as follows: Both parties Alice
and Bob receive a binary string of length n, the question. The promise is,
that x and ¥, the questions, are either equal or their Hamming-distance is
n/2. The output strings are of length 7 = logyn. They win the game, if
their outputs are either equal if the questions are the same and different
otherwise.

When the quantum system described above is considered, it can be shown
that the game can be won with a resource of n Bell states.

5 Classical Pseudo-Telepathy and
Coloring Graphs

5.1 Chromatic Number and Communication Complexity

Let G be an undirected graph with vertex set V and edge set E C V2. (The
fact that G is undirected means that (v,v") € E implies (v',v) € E for all
v,v' € V.) The pseudo-telepathy game in G with answer length 7 and com-
munication C, denoted by PT(G,7n,C), is defined as follows. Two parties
A and B are given vertices v4 and vp (the questions), with respect to the
condition that v4 = vp or (v4,vp) € E. The parties are allowed to exchange
at most C bits of communication (each bit in either direction). Then A and
B are said to win the game PT(G, 7, C) if they can both generate an 7-bit
output r4 and rp (the answer) with the property that r4 = rp holds if and
only if v4 = vp does.

Theorem 1 can be proven, but the proof is not included.
Theorem 1 Let G be a graph. Assume PT(G,n,C) can be won. Then

C > logy x(G) — .
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In the following theorem we show a lower bound on the communication
needed.

Theorem 2 Let G be a graph, and let C,7 € N with
C > [logy x(G)] —n+ 1.
Then PT(G,n,C) can be won.

Proof. For each valid input z € M4 and y € Mp, let x(z),k(y) € {0,...,
X(G) — 1} be the color to the corresponding vertices in the optimal colored
graph G with chromatic number x(G).

The two parties Alice and Bob carry out the following protocol: Alice
outputs the first 72 bits of the binary representation of her color x(z) and
sends the remaining [logy x(G)] — 7 bits followed by the 7-th bit of x(x) to
Bob. Bob checks if the received bits match to the bits 7+1 to [log, x(G)] -7
of his color. If so, Bob outputs the first 7 bits of x(y). If not, he outputs the
first 7 — 1 bits of k(y) followed by the inverse of the last bit received from
Alice.

Obviously, for £ = y this protocol succeeds. Now, let the binary repre-
sentation of x(z) be z'|z", where |z’'| = 7 and |z”| = [log, x(G)] — 7 (let |
be the concatenation of two strings). For z # y we consider two cases:

where z” = ’: Since z # y and 2" = " holds, ' and 3’ must differ in at
least one bit and so Alice’s and Bob’s outputs are different.

where z" # 4": The two outputs always vary, since they differ according
to the protocol at least in the last bit.

Since this protocol needs C = [logy x(G)| — 71+ 1 bits to be exchanged from
Alice to Bob, the theorem follows. O

5.2 The Graph and its Properties

To find the chromatic number of certain graphs can be very difficult. In
general, the problem is NP-hard. The Kneser Graph is an example of a
sparse graph with high chromatic number. Martin Kneser conjectured its
chromatic number and it remained unproven for twenty years [Bollobds 78].
We try to find a lower bound on the chromatic number of our graph by
identifying a maximum independent set.

First we define the graph corresponding to the above mentioned pseudo-
telepathy game:
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Definition 1 For n = 2" and n > 1, let G,(V, E) be the graph with
vertices V. = {vg,v1,...,vom_2,v2n_1} and edge-set E = {(vi,v;) € V? :
DH('Uiavj) = %}

Dy (v;,vj) denotes the Hamming-distance between the two codewords v;
and v; in binary representation. We use Wy (v;) as Hamming-weight® of
the codeword v;. We associate each v; € V with the codeword ¢ in binary
representation.

The definition of this graph corresponds to the quantum-telepathy game
with the Deutsch-Jozsa promise defined in Section 4 and the communication
complexity analysis in Section 5.1 on page 7. The questions for the game
for the two parties Alice and Bob we have two vertices v; and v; with either
v; = v; or Dp(v;,vj) = n/2. The output corresponds to the color of the
vertex v;, v; respectively.

Additionally, we give an equivalent, and in some cases more convenient
definition in terms of subsets.

Definition 2 Forn = 2" and 7 > 1, let G,,(V, E) be the graph with vertices
V = 20 and edge-set E = {(A,B) € V? : |A(A,B)| = &}. With the
symmetric difference A(A,B) == (AUB)\ (AN B) and [n] :={1,2,...,n}.

Lemma 1 The graphs of Definitions 1 and 2 are isomorphic.

Proof. The subset A; € V, with A = {a;,, ai,,...,a;,} is equivalent with the
vertex v; € V in Definition 1, where the bits 41, 49,...,%; are one, and the
other bits are zero. Therefore, Wx(v;) = |4;| and the symmetric difference
A(A;, Aj) is equal to the Hamming-distance Dy (v;,v;) for corresponding
vj € V and A; € V. Accordingly, the edge and vertex-set of both definitions
correspond and the lemma follows. O

For n > 2, let V = Vgyen U Voga be the two subsets of codewords with even
and odd Hamming-weight in V.

Lemma 2 For 7 > 2, the two components of G,(V, E) are isomorphic.

Proof. We define the isomorphism @, , : Veven = Vodd : v/ = v & (ve & v,),
with ve € Veyen and v, € Vogq that maps v to v'. Since Vv € Veyer, : W (v) €
{0,2,...,n—2,n} and v, ® v, is constant with W (ve ® v,) odd, Vv € V,4q
we have Wy (v) € {1,3,...,n — 3,n — 1}. ®,_,, is bijective, so the Lemma
follows. O

3The Hamming-weight of a binary string s of length [ is the number of ones in s, i.e.,
Wi (s) := Du(s,0).
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Lemma 3 Forn > 2 in Gn(V, E). For all v;,v; € V' and V' either Voqq or
Veven, there exists a path of length 2 from v; to v;.

Proof. We have A;, A; € V' (the corresponding subset to V') in G,(V, E).
There exists an A € V with (4, 4;),(A4,4;) € E and therefore with the

property
A(A,A;) = A(AAj) =n)/2 (2)
as follows (An = A;N A and A, = [n]\ 4; U 4;):

If |A; N Aj| > n/4, then A = AL, UA, for A, C Ay and A, C Ay with
AR = [AJ]] = n/4.

If [A; N Aj| <n/4, then A= AU A} for A} C A; \ An and A} C 4; )\ An
with [A}] = |A}| = n/4.

Those subsets A satisfy property (2), therefore {(A4, 4;),(4,4,)} C E and
the lemma is proved, since Lemma 1 and Lemma 2 holds. O

Lemma 4 For n > 2, G,(V, E) has two connected components.

Proof. Since . > 2, we have for all (v;,v;) € E Dg(v;,v;) even. Therefore
we have no edge between a vertices with even and odd Hamming-weight.
For every pair of vertices v;,v; € Veyen, according to Lemma 3 we find a
v € Veyen, with (v,v;) € E and (v,v;) € E. Since the two components are
isomorphic by Lemma, 2, both of them are connected. O

Theorem 3 For n > 2, G,(V, E) has two isomorphic connected compo-
nents.

Proof. Follows directly from the Lemmas 4 and 2. O

Theorem 4 G,(V, E) is vertez-transitive.

Proof. The function @y, 4, : V — V : v/ = v & (v1 @ v2) that maps the
vertex vy to v is an automorphism, since two vertices are connected if their
Hamming-distance is n/2 and the ®,, ,, preserves Hamming-distances be-
tween them. Therefore we can find an automorphism that for all vi,v9 € V
maps all v; to vs. O

Before proving the next lemma, we define the dual Hamming-code (see for
example [vanLint 82]).
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Definition 3 Let {hi,ho,...,h;} be a basis of the dual Hamming-code with
h; = {0,1}" and Vi € {1,...,2} : Vj € {1,...,2}\{é} : Du(hi,h;) = n/2.
Moreover Wy (h;) = n/2 for all i. The generator-matriz G%, of the dual
Hamming-code of length 2" has size 2" x i. The columns of G%, are all non-
zero strings of length 7. And the rows finally set up a basis {h1, hg,..., hy}
of the dual Hamming-code.

Furthermore define the following subset of V:

Definition 4 For n = 2%, let CL(v*, h1,ha,...,h;) be the verter-set {v €
{O,l}n :’U@(al-hl@ag-hQGB---EBaﬁ-hﬁ) =v*, with a1,...,a5 € {0,1}}
of size n.

Lemma 5 The complete graph K, is a subgraph of G, (V, E).

Proof. We show that all (v;,v;) C CL(v, h1,ha,. .., h;) are edges in G, (V, E).
Suppose v; = a1-h1@az-ho®---®@ap-hiz and v; = by -h1Bba-ho®- - D bs-hj.
We have Dy (v, ’Uj) = Wy (v; @’Uj) =(a1Db) - h1 @& D (an Dbi) - hiz, due
to the fact, that a; - h; ® b; - h; = (a; ®b;) - h;. Since this is by definition n/2,
follows (v;,v;) € E. Therefore we have a clique of size n in G, (V, E) and
the statement follows. O

5.3 The Chromatic Number
Theorem 5 The chromatic number x(Gy) of Gn(V, E) is at least n.

Proof. We saw in Lemma 5 that K, is a subgraph of G, (V, E). Therefore we
need exactly n colors to color K, and hence at least n colors for Gy, (V, E). O

We know that x(G,) > n. Now, let us consider the trivial cases 7 = 1, 2.
The pseudo-telepathy game can be won without communication by using
the following strategy:

For 7 = 1: Alice and Bob get the questions z = z1z2 and y = y1y2. Their
output will be a1 = z1 @ z9, by = y1 @ yo respectively.

For 1 = 2: The two parties get the strings x = z1z2x324 and y = y1Y2y3y4.
Finally Alice output the bits a1 = z1 ® z9 and as = z9 @ z3. Bob’s
result is b1 = y1 ® yo and by = yo D ys3.

Now consider the case for n = 3.
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Definition 5 For G(V,E), let Vis C 2"l pe the set of all independent sets
of G(V, E), then for all Ving € Vis, Yvi,vj € Vipg : (v5,v;) ¢ E. Furthermore
let
E)) = ;
GV, E)) :=  max {|Vinal}

be the size of a mazimum independent set and
Vismaz = (Vind € Vs * [Vin| = a(G(V, )}
be the set of mazimum independent sets in G(V, E).
Lemma 6 If V;S?(g is an independent set in Gp(V, E) and
{h1,ha,...,ha—1,hin}

a basis of a dual Hamming-code, then the n sets

V(z1+z221+---+mﬁ2ﬁ_1
ind

):{’U:U@(:I:l-hl@xg-hg@---gaxﬁ-hﬁ) EV]} (3)
for z; € {0,1} are independent sets and mutually disjoint.

Proof. First let us show that they are independent. Let c = x1-h1 @ x2-ho ®
.- ®2h—1 hi—1 ® T - ha, in (3), for some x4, ..., z5. Since Vu;,v; € VI(O) :

_on—1
Dy (vi,vj) # n/2, the two corresponding vertices in VI(JCH_"'HC”2 ), have

Hamming-distance Dy (v; @ ¢,v; @ ¢) = Dg(vi,v;) # n/2 and independence
follows.
To proof disjointness, suppose they were not. Then, there must exist

@

vertices v,v' € V0 and v € V", for some [ = z; + ... + 52771, Since the

(0)

graph is vertex-transitive, we choose the first independent set VI0 , instead of

Vl(l'), for I' # 1. Those cases can be derived by considering a graph isomorphic
to G, (V, E). We have for [ > 0 (otherwise the sets are identical)

Dy(v,v') = Dy(v,v®c) (4)
= n/2. (5)

Equation (4) holds, since v' € VI(Z), and Equation (5) follows from the fact,
that Wy (c) = n/2 (the case Wy (c) = 0 drops out, since [ > 0) as property
of dual Hamming-code as stated in Definition 3. Therefore Dy (v,v") = n/2
and this contradicts the fact that v and v' are members of VI(O). a



CLASSICAL PSEUDO-TELEPATHY AND COLORING GRAPHS 13

Theorem 6 The chromatic number x(Gs(V, E)) is 8.

Proof. Again let V' = Ve U Vpgq- Define

Vina = {0°} U |J {107 11077} (6)
1<i<7

Obviously, V;,q is an independent set, since all elements have mutually
Hamming-distance 2. Furthermore the set

Ving = {v € {0,1}" : ¥ € Vjpa}

is an independent set as well with the same property concerning the Hamming-
distance as the set in Equation 6. Now the set V;,q4 U V;nq4 is an independent
set since V(vi,vj) € Vina X Vina : Du (vi,v;) € {6,8}. Since [V;UV;| = 16 and
Veven and V,4q are isomorphic, we can find an independent set of the same
size in V,44. Uniting these two sets leads to the independent set VI(O) of size
32. We can now determine 8 mutually disjoint maximum independent sets
using a basis of a dual Hamming-code as follows:

VI(z'+2j+4k) —{v:v®(-h@j-ha@k-h3) € VI(O)}.

The fact that they are mutually disjoint and independent is a consequence
of Lemma, 6. We know further from Theorem 5 that the chromatic number
is at least 8. Since the color-classes VI(O), . ,VIm cover the vertex-set V', we
found an optimal coloring for G(V, E) and the theorem follows. O

Corollary 1 The pseudo-telepathy game can be won without classical com-
munication for n < 3.

Proof. For nn = 1,2, the outputs of Alice and Bob are according to the
strategy discussed at the beginning in Section 5.3 on page 11. Then, they
succeed for all valid inputs and therefore win the game.

Since G(V, E) can be colored with 8 colors (and logy(8) = 3 bit suffice
to encode the color), Alice and Bob can output the color of the vertex of
their question. O



CLASSICAL PSEUDO-TELEPATHY AND COLORING GRAPHS 14

5.4 Maximal Independent Sets

We covered the cases 7 = 1,2,3 and showed for those that the classical
pseudo-telepathy game can be won without communication. Since an op-
timal coloring or the chromatic number itself is not easy to determine in
general, we will approach the remaining cases 7 > 3 by identifying a max-
imum independent set a(G,(V,E)) in the graph. A subset V;,q C V of a
graph G(V, E) is independent, if and only if V(v;, v;) € Viid : (vi,v5) ¢ E.
We determine a maximal independent set in the following meaning.

Definition 6 An independent set Vipq of a graph G(V, E) is mazimal if and
only if
Vo' € V\ Vipag : Fv € Vipg = (v,0") € E.

For some subsets of the vertex-set V we make the following definitions
corresponding to [AK 97].

Definition 7 Let ([Z]) be the set of subsets of 2" consisting of elements
with cardinality k. For even k, witht+2i >0 and 0 < i < (n—1)/2 let .’ng?k
be the following set:

f{j;’“:{Fe ([Z]> F O+ 24 Zt—l—i}. (7)

Moreover let [t + 2i] = {1,...,t + 2i} denote the intersection-spot of size
t+ 2i.

Note that in contrast to [AK 97], ¢ will be negative for some instances for
our purpose. In their paper, Ahlswede and Khachatrian proved that .7-"2 sz is

a maximal, t-intersecting subset of ([z]) for a specific ¢, depending on n. We
use the intersection-property to determine an independent set in G, (V, E).
First let us consider the vertices with Hamming-weight less than n/2 (again
in the subgraph with vertex-set Veyen). For 7 > 3, let

Vel = F0 UF™s u
ind = JS-nqn Y g oV
n,%—4 n,>—2
D) L5
-1
o n,21
- U "chn—|—2l,cnfl (8)

=0
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be a subset in the subgraph of G, (V, E) with vertex-set V;En ={v € Veyen :
Wr(v) < n/2}, for ¢, =n/4— 1.
Define further the inverse set of .7-";3 Z?k as the set .75;" K with elements

)
n]

{4 € (n[_ k) tAe .7-"2 Z-’k}. Now, let us determine a maximal independent set,

with V;g analogously defined as set (8).

Theorem 7 For nn > 3, the set

Ving = Vo2UV.2

ind ind
%71

n,21 n,21
= U (F—cn—l—Ql,cn—l U ‘7:—cn+2l,cn—l) (9)
=0

is a mazimal independent set of Gp,(Veyen, E) for ¢, =n/4 — 1.

To proof Theorem 7, we examine first the intersection properties of its sub-
sets in the following lemmas.

Lemma 7 For 0 <I< % -1, Fﬁ,c%f—l—Zl,cn—l s an independent set.

Proof. We have to consider only sets with vertices with Hamming-weight
2l > n/4, since for other sets, the cardinality of the symmetric differ-
ence (AU B\ AN B) is at most n/2 — 2. For the remaining cases, for all
ABeF"2 . andl>n/8 wehave |[ANB| > —cp+2l = —n/4+1+2
because of Definition 7 and so the Hamming-distance of the corresponding
codewords is at most 2(2] — (—c,, +21)) = n/2 — 2 and independence follows

as well. 0

21 2 -
Lemma 8 For all 1,I' € {0,...,% — 1}, j:fcn‘i‘Ql,Cn_l U ffcn+2l',cn—l' is an
independent set.

Proof. First note that in set (9), ¢t + 21 = (—c¢, + 2I) + 2(c, — [) is equal
to ¢, = n/4 — 1 and therefore the size of the intersection-spot is n/4 — 1

for all subsets. Consider ,I' € {0,...,n/4 -1}, A € -7:4122734-21 ¢,y and B €
]_-n,2l’
—cn 2l e 1"

For 2/ + 2I' < n/2: Again, the cardinality of the symmetric difference is less
than n/2 and so the union of the sets is independent.
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For 2] + 2" > n/2: We consider the intersection between A and B in the
intersection-spot. As a consequence of Definition 7 we have |AN[n/4 —
1]] > ! and |[BN[n/4 —1]| > I', therefore A and B will be at least
(I+1'—(n/4—1))-intersection (Inequality (10)). Since we consider the
cases where 2] + 2/’ > n/2, we have [ +1' > n/4 (Inequality (11)) and
the symmetric difference between A and B is the following:

IAUB\ANB| < |Al+|B|-20+"-(2-1) (10)

—~

1
< a4+a -2 _(%_4 11
< 2+ (7= -1 (11)
n
= Iy
2

Since this holds for all such A and B, the union set is independent and the
lemma follows. Of course, Lemma 7 follows from Lemma 8. O

Lemma 9 If V;,q is an independent set and v € Vg, then Vg U T is an
independent set as well.

Proof. If Vj5,q is an independent set and v € Vj,,4, then for all v’ € V4 \ {v},
Dy (v,v") # n/2. Generally Vu,w € {0,1}" : Dy(u,w) = n — Dy (u,w)
holds and so for all v’ € Vj,q \ {v} is Dy (v,v") = n — Dy (v,v") # n/2 and
the proof is complete. |

Proof of Theorem 7. Independence follows directly from Lemmas 7, 8 and 9.
We proof that the set is maximal by contradiction. Suppose Vj;,4 is not max-
imal, then by Definition 6, there must exist a vertex v € Veyen \ Ving, such
that V;,q U {v} is still an independent set. Since ff’§_17%_1 ={0"} C Vina,
Wy (v) # n/2. Furthermore Wy (v) ¢ {0,2,...,n/2-2,n/2+2,...,n—2,n},

21
because F“

2l ATe maximal by definition. The the theorem follows. O

5.5 Bounds on the Chromatic Number

Finally, we assume that V} ; = Vinq as defined in Equality (9) is a maximum
independent set G, (Veyen, E).-
The size of V; ; for 2" =n > 8is

®|3

—1 1

3
ind Il+m m
=0 m=0
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335 > FERNFI A S

Since the chromatic number x(G,) > n(Gy)/a(G,) and we assume that
Viy.q 18 @ maximum independent set, we have a lower bound on the chromatic
number. Using the the communication complexity bounds for the pseudo-
telepathy game stated in Section 5.1 (page 7), we find a bound on the amount
of communication we need to win the game. For n = 4, x(Gig) > 27.3.
Therefore we would need at least log,(27.3) —4 = 0.77 bit of communication

to win the game and therefore simulate the corresponding quantum system.

In the next corollary we use the notation defined in [Brassard 99]. For n = 4
have the following:

Corollary 2 IfV; , is a mazimum independent set, then there exists a pair
of sets of measurements, Ma and Mp (each of size 2'6 on / qubits, such that,
for the quantum measurement scenario (| ®T)8%, M4, Mp) with | ®1)8% =
: >icqo,134 |1)] 1), any local variable hidden scheme must be augmented with

at least 0.77 bit of communication in order to exactly simulate it.

Proof. If V7 , is a maximum independent set, then we have a lower bound on
the chromatic number and with Theorem 1 a lower bound on the amount of
information needed to win the game. By winning the game we can exactly
simulate the quantum measurement scenario depicted in [Brassard 99]. O

Theorem 8 The chromatic number in Gy, (V, E) increases with
c <x(Gn) <c
for two constants ¢y, ¢y, with 1 < ¢j,¢cy <2 and ¢; < ¢y

Lemma 10 The pseudo-telepathy game can be won with 271 + 1 bit of
communication for even n.

Proof. Alice outputs the first 7 bits of her question and sends the first
n/2 + 1 bits of her question to Bob. Bob can immediately output the first
7. — 1 bits of Alice’s question. Since the questions are either equal or have
Hamming-distance n/2, Bob knows now if Alice has the same question or
not. Therefore, he outputs the 7i-th bit of Alice’s question if the questions
are equal and its inverse otherwise. They will always win the game with this
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strategy and the lemma follows. |

Proof of Theorem 8. Using Theorem 2 and Lemma 10 we have logs x(G,,) —
fi+1 < 2%~ 4 1. Therefore for 7 > 4 we have
2" 4 <

logy x(Gp) < 2n=1 4 7 = om (13)

N =
B~ w

and by exponentiating Inequality (13) with 2 we have

ENE

X(Gy) < 21" = (21)"

and so 23/% = ¢, < 2 follows.
Theorem 4 in [Brassard 99] states the communication needed to be ex-
changed is ¢2", for ¢ > 0. Therefore by using Theorem 1 we have

log, x(Gp) — 7 < 27

and further ”
X(Gn) < gen+i < 2c’n

for some n > ng. Since ¢ > ¢ > 0 we have 1 < 2¢ = ¢; and the theorem
holds. O

Now, let us find a lower bound on the maximum independent set.

Corollary 3 The size of a mazimum independent set a(Gy) of Gp(V, E)
increases exponentially with a(Gp) > b", for 1 <b < 2 and n > nyg.

Proof. Since x(G,) > n(G,)/a(G) = 2" /a(Gy)*, we have

a(Gy) > & = (3) , (14)

Inequality (14) holds because of the lower bound on the chromatic number
stated in Theorem 8 and the theorem follows with b = 2/¢,, < 2and1 < b. O

We consider the following theorem:

“n(G,) denotes the number of vertices in G.,.
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Theorem 4 in [Brassard 99] There ezists a pair of sets of measurements,
My and Mg (each of size ?QR on 7 qubits, such that, for the quantum mea-
surement scenario (| ®1)4% My, Mp) with | ®T)§% = ﬁ Yicfoyn [1)]1),
any local variable hidden scheme must be augmented with a constant times
2" bit of communication in order to exactly simulate it.

Theorem 4 in [Brassard 99] does not imply that the lower bound obtaining
from

x(G) 2 n(G)/(G) (15)

is asymptotically not optimal. This is because the cardinality of the inde-
pendent set V¥ ,, defined in Equality (9), is increasing exponentially with n
(Equation (12)), the maximum independent set will increase exponentially
as well (probably the maximum independent set is V,» ;). Moreover we saw
in Theorem 8, that x(G,) increases exponentially with a constant ¢ < 2.
Therefore the bound in Equation (15) can be optimal.

6 Conclusions

We could show that determining the exact amount of communication needed
to simulate a specific quantum scenario is in fact a NP-hard problem; namely
determining the chromatic number of a specific graph. Now, for the first time
we could conjecture an exact lower bound the amount of communication
needed in order to exactly simulate the corresponding entangled quantum
system, rather than an asymptotical bound. This conjecture claims that
certain quantum systems with at least four EPR-pairs cannot be simulated
with classical communication.

Our results might be of interest from a quantum and classical point of
view. This conjecture is a generalization of the The Complete Intersection
Theorem for Systems of Finite Sets from Ahlswede and Khachatrian [AK 97]
in terms of determining maximum independent sets over several levels. We
found color-classes and finally conjectured an exact bound on the chromatic
number in this specific graph.

7 Open Problems

It is still to be proven that the maximal independent set V;; , defined in
Equality (9) is a maximum independent set. One approach could be to
prove this by considering upper and lower shadows within left-compressed
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sets [Comb 86], [AK 97]. If not, then what is the structure of it and its cardi-
nality. This does not imply (and it is not believed), that we can find a good
lower bound on the chromatic number by identifying a maximum indepen-
dent set. One interesting question is to determine the chromatic number of
G, (V, E) or at least a good lower bound on it.

By finding the chromatic number of this graph, we would have the ex-
act amount of information needed to exactly simulate one quantum scenario.
From the graph-theoretical point of view, the connection to sparse and dense
highly symmetric graphs with high chromatic number seems worth to inves-
tigate, since there already exists well-studied graphs of this form. Moreover,
the isomorphic hypergraph has a highly symmetric structure as well. Much
research has been done investigating hypergraphs (e.g., [Comb 86]) and such
graphs are better and better understood. Another approach is to parame-
terize cliques with different bases of a dual Hamming-code and determining
allowed colors of vertices. This could be one way to proof that x(G16(V, E))
is bigger than 16. From the quantum point of view, it would be interesting
to have exact or lower bounds for arbitrary quantum scenarios in order to
exactly simulate them.

Even though prediction is difficult — especially of the future — we hope
we are soon able to match another piece to the puzzle that surrounds the
mysterious phenomenon of quantum entanglement.
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