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We assume the reader to have basic knowledge of quantum information (mixed quantum states, density 
matrices, entanglement) and notation. For computer scientists, [7] will be quite a good introduction. 
Furthermore, some information-theoretical knowledge (information-theoretically secure secret-key 
agreement, secret-key rate and intrinsic information) is useful as well. A good introduction to this can be 
found in [1]. 

 
Abstract 

One approach to investigating the connection between the quantum and classical case in key agreement 
is to start from a quantum state and to study the behaviour of the resulting classical probability 
distribution. Gisin and Wolf [3] could show that there is a close relationship between the conditional 
mutual intrinsic information [1] and the separability of mixed quantum states. They started with a 
quantum state and analyzed the classical outcome after certain measurements. Another approach is to 
start with a probability distribution coming from a key generation scenario and find corresponding 
quantum states. There is not only one quantum state which matches a chosen classic probability 
distribution (similar to the possibility of obtaining different probability ditributions performing 
measurement of quantum states with respect to different bases). We show in this documentation that 
generating mixed quantum states from classical probability distributions with no intrinsic information 
could lead to entanglement and in some cases to disentanglement, depending on the phase function. 
Furthermore we show that the positivity of intrinsic information does not imply that all the 
corresponding quantum states are entangled. 
 
Keywords. Key agreement, quantum cryptography, quantum privacy amplification, purification, 
entanglement, intrinsic mutual information, secret-key rate, information theory. 

 
 

1 Introduction 
 

At first sight it is not obvious that quantum information processing is more powerful than classical algorithms. Grover, 
however (described in [7] p. 275), as a good example could show in 1998 that searching elements in a unsorted quantum 
database is potentially (unfortunately not exponentially) faster than what classical computers can achieve. This opens 
new ways. The secret lies in the quantum states that behave very ‘non-classical’. One bit (binary digit) information in 
the classical case in contrast to a ‚qubit‘ (quantum bit) representing a probability between 0 and 1 in the quantum case. 
It is easy to see that by measuring one classical register, we have all information that was (and still is) stored in it. On 
the other hand, the laws of quantum mechanics restrict the possible measurements to be carried out. If perfect 
measurement were possible then one would be able to clone quantum states and that leads to a conflict (No-cloning 
Theorem, [4] p. 68). Measurement are irreversible an therefore information will get lost. From the physical point of view 
we have some particles (photons or electrons for example) and could take their polarization or energy level as state. In 
practice it is difficult to handle quantum states because it is almost impossible to protect the state from the 
environment. This  issue leads to small  errors that change the state of the particle. In theory, however, quantum states 
can be treated as they were perfect and this often leads to very surprising results. 
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Figure 1: Secret-key agreement using 

random bits 

2 Information-theoretically secure secret-key agreement 
 
In general it is impossible to achieve information -theoretically secure secret-key agreement only using authentic, but 
completely insecure communication between Alice and Bob. This is because if Eve can obtain all the information that 
flows from Alice to Bob and back, C1,...Cn, than the conditional Shannon-entropy H(S|C1,...Cn) of the common secret-
key S is zero. So Eve can reconstruct the secret-key S. From that point of 
view there exists only computationally secure key agreement such as 
Diffie-Hellman for example. The point is now to have an additional 
‚source‘ of information. Using this we can use protocols to finally achieve 
unconditionally secure secret-key agreement with arbitrary high 
probability. 
We take this completely classical approach as described in detail in [1] p. 
35. We have three parties Alice, Bob, and Eve. Alice and Bob want to 
generate a secret key using a random bit generator as source R, for 
example a satellite sending random bits as a stream. All Alice, Bob and 
Eve are receiving the random bits with certain error bit rates ( εβα ,, ) 

depending of the qualitity of the connection from the satellite (see Figure 1). We assume the bits received behave like 
coming from a binary-symmetric channel. Than we can formalize this scenario by setting up a joint probability 
distribution ),,( zyxPXYZ

. Depending on the error probabilities, this will lead to different distributions (see Appendix 

A). Depending on βα, , and ε , secret-key agreement with additional public but authentic communication is possible 

or not. It is a little surprising that βα ,  can be greater than ε  and is it is still  possible to generate a common secret-key 

in spite of the initial drawback of Alice and Bob, using classical privacy amplification. This  scenario we take as a 
motivation to investigate the distribution XYZP . 

 
 
3 Entangled states and intrinsic information 
 
There are several criteria for wether quantum privacy amplification (also known as purification) is possible or not. One 
of them is the α-entropic inequality [12] to decide if the state is separable. Peres [9] showed that this criterion is 
weaker than the one we consider here. We check the eigenvalues of the partial transpose of the density matrix (defined 
in Section 5) for the occurrence of negative values [10, 13]. M., P., and R. Horodecki found that if there is at least one of 
them negative, it is necessary and sufficient condition (if 4)dim( =ABρ ) for entanglement (coming from the german 

word „verschränkt“, mentioned the first time in the early 20th century from Schrödinger). Entangled means that the 
mixed quantum state cannot be remo tely prepared by classical communication. In this case quantum privacy 
amplification (QPA) is possible (how to do so is explained in [6]) and these mixed states Alice and Bob can be used for 
generating a common secret-key using laws of quantum mechanics. 
We will have a closer look at mixed states such as 

ABρ . A state is called separable (i. e., not entangled) if it is possible 

to write its density matrix as a product state such as ∑ ⊗=
j BjAjjAB p ρρρ . This is the case if the states Ajρ  and Bjρ  

can be generated by purely classical communication and thus QPA is not possible. If it were, one could generate 
entangled states with purely classical communication using these states to generate a secret-key in the quantum 
domain by carrying out a quantum protocol. And this is a contradiction to a generalization of Shannon’s Theorem. 
 
Gisin and Wolf could show in [3] that entangled mixed quantum states are strongly correlated with mutual in trinsic 
information. They prove that if a mixed state is entangled then it is possible to generate a common secure secret-key 
with using a corresponding classical distribution coming from optimal measurements of this quantum state. They start 
with a pure quantum state 

EBA HHH ⊗⊗∈Ψ  (
iH  are the 2-dimensional Hilbert spaces equal to 2C , so 8C∈Ψ ) 

and trace out Eve to obtain the density matrix )(Tr Ψ=
EHABρ . That means the Alice and Bob are only looking at their 

sub-quantum-system and make their measurements there in. On one hand, when starting from an entangled state (i. e., 
not separable) the positivity of the intrinsic conditional mutual information I(X; Y↓ Z) is shown. In other words the 
possibility of information-theoretically secure key agreement is given in the classical and quantum scenario, no matter 
how Eve behaves. On the other hand if the state is separable (i. e., not entangled) the common conditional information 
I(X; Y|Z) is zero (hence the common mutual intrinsic information I(X; Y↓ Z) is zero as well) and so it is impossible to 
generate a secret-key neither in the classical nor in the quantum case. 

R X Y 

Z 

α β

ε
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Figure 2: Linking the quantum and classical scenario 

 
 
4 From classical distributions to quantum states 
 
We now take another approach to establish a connection between classical and quantum key agreement. Gisin and 
Wolf showed that there is a connection by assuming quantum states are given, as mentioned in the previous section. 
Now we start with a classical probability distribution (perhaps coming from a quantum scenario) and end up with 
quantum states. As we said before, measuring a quantum system destroys it and we ‚only‘ get classical information 
from it. It is hence not surprising that one distribution corresponds to many, somehow related quantum states as we 
will see. By getting classical information we have to measure a quantum system with certain bases that leads to the 
following equation: 
 2

,,:),,( Ψ= zyxzyxPXYZ     . (1) 

The result of a measurement is a realization of the probability distribution corresponding to the state Ψ  by measuring 

in certain bases { } AHx ⊂ , { } BHy ⊂ , { } EHz ⊂ , respectively. When measuring, we have to use observables. The 

standard basis { }1,0  (also known as computational 

basis) as one observable or the dual basis (also called 
Hadamard basis) { }='1,'0 ( ) ( ){ }10,10 2

1
2

1 −+  

as an another observable are two examples of 
orthonormal measurements 
({ } Haa ⊂21 , , ⇔= 021 aa 21 , aa  are othogonal, 

if 21 aa  is scalar product in 2H ). Measurements are 

hermitian and the result is an eigenvalue of the 
corresponding projection operator. This eigenvalue 
belongs to the associated eigenvector, for example 

( )T0,10  =  or ( )T1,01  =  in the standard basis. In the 

case of a single qubit 10 10 λλϕ +=  (quantum 

states are defined in Section 6) the probability to 
measure the state 0  is 2

0λ  in the standard basis. It is 

important to note that after the measurement the state 
falls to one of the eigenvectors and the superposition 
vanishes. 
If we want to find a quantum state corresponding to a 
specific classical distribution ),,( zyxPXYZ

, we have to 

define a phase )2,0[),,( πφ   ∈zyx  for each state 

zyx ,,  (we abbreviate zyx ⊗⊗  by zyx ,, , ⊗  

stands for the tensor product) to create a quantum 
state. Our goal is to investigate the effect of the choice of the phase function for the discussed connection between 
the classical and quantum world. 
 
5 How to find corresponding quantum states 
 
 
By ‘generating’ a quantum state we must have a close look at the possible measurements. As we stated before, 
measuring a quantum state is equivalent to taking an instance of a certain probability distribution ),,( zyxPXYZ

 with 

}1,0{=== ZYX . Now we have to rebuild the whole sample space from all the events that could be happen. We have 

to summarize all possible outcomes with the corresponding probability. By definition (see [4, 9]) we have 
 kjic

kji
kji ,,

),,(
,,∑

××∈

⋅=Ψ
ZYX

 (2) 

 with 

entanglement? 
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{ }{ }{ }( )
222

,,

EBA HHH

zyx

××∈
)2,0[),,( πφ ∈zyx
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,, ≤≤ kjic  and 1
,,

2

,, =∑
kji

kjic  (3) 

 to Ψ  be a valid quantum state. We have to insert the classical information coming from the distribution. We know 

the probability of being measured from each state. We see that every 
 ),,(

2

,, zyxPc XYZzyx =  (4) 

because of (1), (2) and (3). Then quantum states can be described as vectors of unit length in a Hilbert space ( 2CÇ = ). 

Because of this we have one more degree of freedom to define our quantum state. There exists not only one 2

,, zyxc  

satisfying (4). For every potential state we have to define a phase which sets the direction of the vector in the Hilbert 
space. This is done with the phase function )2,0[),,( πφ   ∈zyx  in the factor ),,( zyxie φ⋅ , which satisfies of course 

1),,( =⋅ zyxie φ . Now we can completely describe our state with the following summation 

 zyxzyxPe XYZ
zyx

zyxi ,,),,(
),,(

),,( ⋅=Ψ ∑
××∈

⋅

ZYX

φ . (5) 

At the moment we know almost nothing about influences of the phase function. This will be the subject of our 
investigations. 
We will study the behaviour of the eigenvalues of the partial transpose of ABρ . In this special case we do not need to 

generate the state 
ABEΨ  from (5) with tracing out Alice with )(Tr ABEHAB E

Ψ=ρ  (see Figure 2). We can directly 

produce the state ABρ  by using the conditional probability distribution )|,(| zyxP ZXY  obtained from ),,( zyxPXYZ . We 

compute 0Ψ  and 1Ψ  for both possible measurements 0 and 1 of Eve. This is done with 

 yxzyxPe ZXY
yx

zyxi
z ,)|,(|

),(

),,( ⋅=Ψ ∑
×∈

⋅

YX

φ  (6) 

for z equal 0 and 1. We want to investigate the density matrix of the mixed state 
ABρ , so we have to use the projectors 

of (6) zzz
P ΨΨ=Ψ    and build the density matrix ABρ  for as follows: 

 
Z

PzP
z

ZAB Ψ
∈

⋅= ∑
Z

)(ρ . (7) 

It is obvious that at most two of the four eigenvalues of ABρ  can be different from 0 (and of course at least one). This 

is because this mixed state is a statistic mixture of two the pure states 
0Ψ  and 

1Ψ . If these two states are not 

equivalent, that will lead to the fact that exactly two eigenvalues are different from 0 (if two eigenvalues are equal then 
they are counted twice). 
Now we have completely defined the mixed state (7) we will check for entanglement. One really efficient way to do so is 
by calculating the partial transpose and check this matrix for negative eigenvalues [13] as mentioned above. If this new 
matrix t

ABρ  has at least one negative eigenvalue then ABρ  is called with negative partial transpose. We define the 

partial transpose in general and have a closer look to the much easier case with )dim()dim( BA HH =  is equal to 2. We 

rewrite 
ABρ  as 

νµρ mnAB ,)( . Now we can define the partial transpose as νµνµ ρρ mnABnm
t
AB ,, )()( = , just transposing the 

Latin indices, but not the Greek ones [9]. This is no unitary transformation, but a hermitian one. In our case when 
2)dim()dim( == BA HH  it is very easy to calculate it, only by transposing the four 2× 2 sub-matrices of 

ABρ  (see 

Appendix B). When the dimension of the Hilbert spaces is equal to 2, we are very lucky, because negative partial 
transpose of 

ABρ  implies entanglement and vice versa [9]. Now we are going ahead by checking several phase 

functions and studying the behaviour of the eigenvalues of the partial transpose. 
 
6 Linking classical and quantum scenarios 
 
 
We want ),,( zyxPXYZ  with I(X; Y↓ Z) > 0 on one hand and entangled states on the other hand for the key-generation 

phase. Now we start with the classical probability distribution ),,( zyxPXYZ
 and build the density matrix 

ABρ  to check if 

it has negative partial transpose to see if 
ABρ  is entangled or not. It is proven in [14] that 

ABρ  can be purified 

(quantum privacy amplification is possible) if the mixed state is not separable (i.e., entangled). We only consider the 
case where )dim()dim( BA HH = 2)dim( == EH . We define a class of functions ),,(}{ zyx

ia φ  that allows us for 

generating related, but different quantum states from one classical probability distribution. Related means that we can 
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see in all those states that the eigenvalues of t
ABρ  remain the same, how ever the parameters },..,{ 1 kaa  are chosen. By 

defining a special class of functions )(⋅φ , we show with a numerical evaluation that the eigenvalues of the partial 

transpose of the density matrix of our states are the same using certain probability distributions (yet not in general). 
As the easiest example we consider the phase function 
 0),,()0( =zyx φ . (8) 

That means nothing else than that the phase is independent from yx,  and z  respectively and equal 0. The density 

matrix will have real entries only. Sometimes it is useful to take the state generated by the phase function (5) as 
reference to compare the other outcomes (see Appendix A for a list  of the tables and Appendix C for results). 
We consider the following phase function by using a linear combination of inputs zyx ,,  with completely random 

coefficients 3
)1..0[321 ),,( Raaa R∈ : 

 πφ ⋅⋅++= ++ )(
2

321
)1(

},,{ 321321
)(),,( aaaaaa zayaxazyx . (9) 

It is obvious that ),,(},,{
)1(

321
zyxaaa φ  lies in the interval )2,0[ π , so that this is a valid phase function. We will 

conjecture in Appendix C the somewh at surprising fact that eigenvalues of 
ABρ  do not change; that is possible 

because of the special character of (9) as a linear function in its parameters. This eigenvalues depend only on 
),,( zyxPXYZ . But it is more interesting, that the eigenvalues of t

ABρ  remain the same, although all of ABρ  matrix 

elements change, and so does the statistic mixture. 
Now we chose another function: 
 πφ 3

22 )(),,( ⋅⋅+⋅+⋅= zxzyyxzyx)( . (10) 

No additional parameters are needed for our purpose. We will see in Appendix C that )(2 ⋅)( φ  will generate a valid 

quantum state as well ( 1)Tr( =ABρ ), but in this case the eigenvalues of t
ABρ  are different (wavy underlined) compared 

to those calculated with (8) or (9). However there still exists one negative eigenvalue that shows the corresponding 
quantum state is still entangled. 
The question is now if there exists (at least for the distribution given in table 2) any function )(3 ⋅)( φ  that turns out a 

completely non-negative set of eigenvalues of t
ABρ . 

We are approaching this problem by generating several phase functions ),,()3( zyxφ  with comletely random behaviour. 

There exist exactly 8 different outcomes within a parameter range 3}1,0{),,( ∈zyx  for ),,()3( zyxφ . We define the 

function 
 xyzaaaaaaaa azyx =),,()3(

},,,,,,,{ 111110101100011010001000
φ , (11) 

with the parameters )2,0[,..., 111000 π∈aa  as a completely general function. The parameters are chosen randomly within 

the interval )2,0[ π . We will numerically calculate partial transpose using hundreds of different ),,( zyx(3)
(.) φ  (i. e., 

different randomly chosen parameters 
111000,..., aa  for each ),,( zyx(3)

(.) φ ) and check if it has positive partial transpose. It 

is performed with Maple V as listed in Appendix B. With this approach by randomly chosing 500 different phase 
functions we did not find a mixed quantum state that does not have negative partial transpose using (11). In other 
words, we cannot easily find a phase function )(⋅φ  that generates a mixed state ABρ  from the distribution defined in 

table 2 with I(X; Y↓ Z) > 0 that is not entangled. But we found some phase functions for which the corresponding 
density matrix is separable by using only phases that are multiples of π4

1  (see Theorem 2, Section 7). 

Now let us consider a distribution as depicted in table 4 with I(X; Y↓ Z) = 0 (hence S(X; Y||Z) = 0, [1]). In this case Alice 
and Bob cannot use these random bits coming from the random bit source to generate a secret-key. We will generate 
mixed quantum states ABρ  with these different phase functions (8), (9), (10) and (11). Using (8) we have exactly one 

eigenvalue in t
ABρ  and therefore it is equal to 1. 

ABρ  has positive partial transpose and thus we have no entanglement, 

and ABρ  can be written as ∑ ⊗
j BjAjjp ρρ . This separable state ABρ  can be generated by purely classical 

communication and therefore QPA is impossible. 
The special case that 

ABρ  has exactly one eigenvalue, namely 1 (Appendix C) is evident. We have equivalent states 

0Ψ  and 1Ψ  which is a consequence that ),,( zyxPXYZ  is completely symmetric and )(⋅φ  is equal to 0. Generating 

ABρ  with (7) will therefore lead to a pure state. 

Now we use phase function (9) and at the first sight we are very surprised about the behaviour of the eigenvalues of 
t
ABρ   in the quantum domain. The number of eigenvalues of ABρ  is, as expected, 2. But t

ABρ  has one negative 
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eigenvalue in contrast to the example above using the phase function (8). That means that 
ABρ  is entangled and QPA 

can be applied. Now we have positive partial transpose on one hand by using 0),,()0( =zyx φ  and negative partial 

transpose on the other hand by using ),,()1(
},,{ 321

zyxaaaφ  as another phase function. With [3] keeping in mind, this will 

lead to the assumption that there must be a close connection between choosing a basis when performing a 
measurement and choosing a phase function when finding corresponding quantum states. We can state that there 
must be ‘better’ and ‘worse’ choices for phase functions ),,( zyxφ . We can show this in the example when starting 

from ),,( zyxPXYZ  as described in table 4 with I(X; Y↓ Z) = 0. There exists at least one ‘bad’ choice for ),,( zyxφ  in the 

meaning that the generated quantum state will be not entangled and a lot of ‘good’ choices. (8) is such a bad choice. 
All the other choices considered and calculate in Appendix C lead to a quantum entanglement such that QPA is 
possible. 
The following conjecture has its reverse counterpart as mentioned above. Theorem 1 stated in [3] shows if ABρ  is 

separable (i. e., not entangled) then there exists a generating set { } EHz ⊂ , such that I(X; Y|Z) = 0, how ever Alice and 

Bob choose their bases { } AHx ⊂  and { } BHy ⊂ . Our conjecture is that for one distribution with I(X; Y↓ Z) = 0 (see 

Appendix A, table 4), there exists a at least one phase function ),,( zyxφ  so that )(⋅φ  is entangled and hence QPA is 

possible (see Section 7). In general,  arbitrary chosen phase function lead to entanglement.  
Furthermore, our conjecture is now that for distributions with I(X; Y↓ Z) > 0 (e. g. Appendix A, table 2), there exists a at 
least one phase function ),,( zyxφ  such that ABρ  is entangled and hence QPA is possible. This is similar to Theorem 2 

in [3] that says if )(⋅φ  is entangled then there exist generating sets { } AHx ⊂  and { } BHy ⊂  for Alice and Bob, such 

that I(X; Y↓ Z) > 0, however Eve chooses her basis { } EHz ⊂ . 

 
 
7 Conclusions 
 
Our main conlcusion is that, like the choice of the measurement bases in [3], the choice of the phase function when 
linking classical and quantum privacy amplification is crucial and must be closely studied. 
 
Our observations lead to the following results: 
In the statements below let EBA HHH ⊗⊗∈Ψ  with 2)dim()dim()dim( === EBA HHH  be a quantum state 

corresponding to a probability distribution ),,( zyxPXYZ
, ZYX ××∈),,( zyx  with respect to a phase function 

)2,0[),,( πφ Rzyx ∈ , and let )(Tr Ψ= P
EHABρ . 

 
Observation 1 The eigenvalues of 

ABρ  and its partial transpose t
ABρ  depend on the choice of the phase function 

),,( zyxφ . 
 

This is suggested by numerical evaluations of the distribution described in tables 2, 3 and 4 using the phase functions 
(10) and (11). 
 
We conjecture that for every ),,( zyxPXYZ , the class of phase functions =),,(},,{ 321

zyxaaaφ  

π⋅⋅++ ++ )(
2

321 321
)( aaazayaxa , with parameters 3

)1..0[321 ),,( Raaa ∈  satisfies the property that the eigenvalues of ABρ  

and its partial transpose t
ABρ  are equal for every choice of 

21, aa  and 
3a . This is suggested by numerical evaluations of 

the distribution described in tables 2, 3 and 4 using the phase function defined in equation (9). 
 
Conjecture 1 For every ),,( zyxPXYZ  with I(X; Y|Z) = 0 there exists a phase function ),,( zyxφ  such that ABρ  is 

separable. 
 

We find an example that satisfies conjecture 1 by using the probability distribution in table 4 and the phase function 
defined in equation (8). However, most of times we ended in an entangled quantum state choosing an arbitrary phase 
function for every probability distribution we investigated. This is related to Theorem 1 in [3].  
 
Conjecture 2 For every ),,( zyxPXYZ

 with I(X; Y↓ Z) > 0 there exists a phase function ),,( zyxφ  such that 
ABρ  is 

entangled. 
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This is  similar to Theorem 2 in [3] but starting with a probability distribution in contrast to starting with a quantum 
state. This is suggested by the example with the distribution described in table 2. For both conjectures 1 and 2 it is not 
obvious that they follow from Theorems 1 and 2 respectively, because there can exist classical probability distributions 
which do not result from optimal measurements. 
We observed that for a ),,( zyxPXYZ

 with I(X; Y|Z) > 0 it is hard to find a phase function ),,( zyxφ  such that 
ABρ  is 

separable with a numerical approach. The numerical search for phase functions ),,( zyxφ  that satisfies the condition 

that all eigenvalues of t
ABρ  corresponding to a arbitrary ),,( zyxPXYZ

 with I(X; Y|Z) > 0 are not negative is not easy in 

general (see Appendix D). There can be found a lot of negative eigenvalues close to 0.  However, most of times we 
ended in an entangled quantum state choosing an arbitrary phase function for every probability distribution we 
investigated. 
 
Theorem 1 There exists at least one ),,( zyxPXYZ

 with I(X; Y|Z) = 0 and a phase function ),,( zyxφ  such that 
ABρ  is 

entangled and can be purified. 
 

Proof. In the probability distribution ),,( zyxPXYZ
 described in table 4 is I(X; Y|Z) = 0 because )( xPX

 and )( yPY
 are 

uniformly distributed. The eigenvalues o f the partial transpose t
ABρ  of the density matrix 
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AB λρ  [5]. 

)31(4
1 −=λ  is one of these eigenvalues and less than 0. Therefore ABρ  has negative partial transpose and hence 

entangled. o 
 
Theorem 2 There exists at least one ),,( zyxPXYZ

 with I(X; Y↓ Z) > 0 and a phase function ),,( zyxφ  such that 
ABρ  is 

separable and can not be purified. 
 

Proof. In the probability distribution ),,( zyxPXYZ  described in table 2 is I(X; Y↓ Z) > 0 because both )( xPX  and )( yPY  

are not uniformly distributed and therefore classical privacy amplification can be applied. We write =)|,(| zyxP ZXY
 

),,(2 zyxPXYZ⋅  because 2
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We transposing  the four sub-matrices of ABρ  we get t
ABρ . The eigenvalues iλ  of  t

ABρ  we get by solving 
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AB λρ  [5]. By straight on solving we find 22

4
12

4
134 )12(0 −⇔=+− λλλλλ  and so the eigenvalues are 0 

and 2
1 , each occurring twice. Therefore 

ABρ  has positive partial transpose and hence separable. o 

 
The choice ),,0,,,,0,0( 2

1
2

3
2

1
2

1 πππππ  for ),...,( 111000 φφ  is not the only one that leads to disentanglement in Theorem 

2. For the sets ),0,0,,0,0,0,0( ππ , )0,,0,0,0,,,( ππππ , )0,,,0,0,,,0( 2
3

2
1

2
1

2
3 ππππ  and ),,,0,0,,0,( 2

1
2

1 πππππ  for 

example, the corresponding density matrix ABρ  has positive partial transpose as well. 
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Similarly to the case where quantum states are given and measurements in certain bases are performed, there is no clear 
connection between the quantum and the classical regime yet. When measuring a quantum state we can only make a 
statement under the assumption of optimal measurements in the sense of choosing on good basis. As we showed in 
this paper by considering quantum states corresponding to classical probability distributions it only makes sense to 
speak of linking the quantum and the classical domain in connection with suitable phase functions (where it is not clear 
what suitable means).  
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Appendix A: Common probability distributions 
 

X 
Y        (Z) 

0 1 

(0) εαεα 22 )1()1( +−−  (0) )1( αα −  

0 
(1) )1()1( 22 εαεα −+−  (1) )1( αα −  

(0) )1( αα −  (0) )1()1( 22 εαεα −+−  

1 
(1) )1( αα −  (1) εαεα 22 )1()1( +−−  

Table 1: General common probability distribution in the satellite scenario for Alice, 
Bob and Eve with the corresponding error bit rates βα,  and ε respectively. 

The distribution must be normalized by the factor 2
1 . 

 
X 

Y        (Z) 
0 1 

(0) 7 (0) 3 

0 
(1) 3 (1) 3 

(0) 3 (0) 3 

1 
(1) 3 (1) 7 

Table 2: Common probability distribution from Table 1 with the corresponding error 
bit rates with 2

1== βα  and 4
1=ε . The distribution must be normalized by 

the factor 32
1 . Both I(X; Y↓ Z) > 0 and S(X; Y|Z) > 0 [1] so that secret-key 

agreement is possible. 
 

X 
Y        (Z) 0 1 

(0) 3 (0) 1 
0 

(1) 7 (1) 6 

(0) 4 (0) 1 

1 
(1) 2 (1) 8 

Table 3: Random probability distribution. The distribution must be normalized by the 
factor 32

1 . 

 
X 

Y        (Z) 
0 1 

(0) 1 (0) 1 
0 

(1) 1 (1) 1 

(0) 1 (0) 1 

1 
(1) 1 (1) 1 

Table 4: Probability distribution derived from table 1 with 2
1== βα  and 2

1=ε  

(norming factor 8
1 ). Obviously I(X; Y↓ Z) = S(X; Y|Z) = 0, therefore no 

secret-key agreement is possible. 
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Appendix B: Maple program 
 

This Program was running on Maple V Release 5 Version 5.00 with Intel 433. 1 precedure call of 
GetEigenValues(   ⋅ ,   ⋅ ) took less than half a second. 
  
# Using linear algebra libraries: 
restart: with(linalg): 
 
 
#### 
# Function to generate quantum states, show their density matrix, 
# eigenvalues of rohAB and rohABt using different phase functions. 
#### 
GetEigenValues := proc (phasefn, PhasePhi) 
 
# Environments: 
local L2, L3, L4, Lnorm, Pxyz, phi, Pz, Phiz0, Phiz1, EV, x1, y1, x, y, 
P_Phiz0, P_Phiz1, rohAB, A11t, A12t, A21t, A22t, rohABt, i, minEV; 
 
# Number of valid digits+1: 
Digits := 10: 
 
# Classical distribution: 
L2 := [[[7,3],[3,3]],[[3,3],[3,7]]]:  # see Table 2 
L3 := [[[3,7],[4.5,2]],[[1,5.5],[1,8]]]:  # randum distribution, see Table 3 
L4 := [[[4,4],[4,4]],[[4,4],[4,4]]]:  # see Table 4 
# s := sum(sum(sum(L[i][j][k],i=1..2),j=1..2),k=1..2); # norming factor 
Lnorm := L2/32; # choosing L2, L3 or L4 
Pxyz := array(0..1, 0..1, 0..1, Lnorm): 
 
# Defining Phase for conversion from Classic distribution to Quantum state: 
phi := proc (x, y, z) 
  if (phasefn = 0) then 
    # all values a1, a2 and a3 are equal to zero: 
    0; 
  else 
    if (phasefn = 1) then 
      # values for a1, a2 and a3 for linear combination: 
      (0.3626242 * x + 0.924623 * y + 0.4657161 * z) * 2/(0.3626242+0.924623+0.4657161) * 
Pi; 
    else 
      if (phasefn = 2) then 
        # no coefficients product of two parameters: 
        (x * y + y * z + x * z) * 2/3 * Pi; 
      else 
        # chosen entries for phi coming from 2nd paramter in list: 
        PhasePhi[4*x + 2*y + 1*z + 1]; 
      fi; 
    fi; 
  fi; 
end; 
 
# Get probability distribution of z: 
Pz := proc(zp) Sum(Sum(Pxyz[xp,yp,zp], 'yp'=0..1), 'xp'=0..1) end; 
 
# Calculating the quantum states Phiz0 and Phiz1: 
Phiz0 := array(1..1, 1..2^2);Phiz1 := array(1..1, 1..2^2): 
for x from 0 to 1 do 
  for y from 0 to 1 do 
    Phiz0[1, x*2+y+1] := exp(I*phi(x,y,0)) * sqrt(Pxyz[x,y,0] / Pz(0)) 
  od 
od; 
# and the same for Phiz1: 
for x from 0 to 1 do 
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  for y from 0 to 1 do 
   Phiz1[1, x*2+y+1] := exp(I*phi(x,y,1)) * sqrt(Pxyz[x,y,1] / Pz(1)) 
   # ...is that right? 
  od 
od; 
 
# Creating projectors: 
P_Phiz0 := transpose(conjugate(Phiz0)) &* Phiz0: evalm(P_Phiz0); 
P_Phiz1 := transpose(conjugate(Phiz1)) &* Phiz1: evalm(P_Phiz1); 
 
# Generating the mixed state: 
rohAB := evalm(Pz(0) * P_Phiz0 + Pz(1) * P_Phiz1):# print("rohAB = ", evalf(%, 5)); 
 
# print rohAB: 
if (phasefn <3) then # verbose output 
  print("rohAB = ", evalf(%, 5)); 
fi; 
 
# print eigenvalues of rohAB: 
eigenvalues(evalf(rohAB)): 
if (phasefn <3) then # verbose output 
  print ("Eigenvalues of rohAB = ", evalf(%, 8)); 
fi; 
 
# Calculate partial transpose of mixed state rohAB: 
A11t := transpose(delcols(delrows(rohAB, 3..4), 3..4)): A12t := 
transpose(delcols(delrows(rohAB, 3..4), 1..2)):  
A21t := transpose(delcols(delrows(rohAB, 1..2), 3..4)): A22t := 
transpose(delcols(delrows(rohAB, 1..2), 1..2)): 
rohABt := stackmatrix (concat (A11t, A12t), concat (A21t, A22t)) : 
 
# and finally get Eigenvalues 2 check if rohAB has positive partial transpose 
EV := eigenvalues(evalf(rohABt)): 
if (phasefn <3) then # verbose output 
  print ("Eigenvalues of rohABt = ", evalf(EV, 8)); 
fi; 
# and verify that rohAB is a valid quantum state: 
if (phasefn <3) then # verbose output 
  print ("Trace of rohAB = ", evalf(trace(rohAB), 8)); 
else 
  minEV := Re(EV[1]); 
  for i from 2 to 4 do # returns the smallest eigenvalue of rohABt 
    if (Re(EV[i]) < minEV) then 
      minEV := Re(EV[i]); 
    fi; 
  od; # postcondition: minEV := min (Re(EV[1]),...,Re(EV[4])) 
  minEV; 
fi; 
end; 
 
 
#### 
# Define random Phi(x,y,z) and show if rohABt is  
# negative or positive partial transpose  
#### 
Check4npt := proc (nums)  local j, rndnum, EV, count, MaxNums, PhiParams: 
  count := 0; MaxNums := 10^10; 
  # generate a random number from [0,2*Pi): 
  rndnum := evalf(rand(0..MaxNums)*2*Pi/MaxNums, 10); # MaxNums := 4 is a good choice for 
table 2 
 
  print ("...looking for eigenvalues in rohABt for every Phi(x,y,z):"); 
  for j from 1 to nums do 
    PhiParams := [rndnum(),rndnum(),rndnum(),rndnum(), 
rndnum(),rndnum(),rndnum(),rndnum()]; 
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    EV := (GetEigenValues(3, PhiParams)): 
    if (EV >= 0) then # print only positive partial transpose 
      count := count + 1: print (EV, "Phi: ", PhiParams); 
    fi; 
    if (j mod 50 = 0) then 
      print ("checked ", j); # how far progressed 
    fi; 
  od; 
  print (nums, " checked, ", nums - count, " rohAB are n.p.t., ",count, " are p.p.t"); 
end; # of proc 
#### 
# Searching for eigenvalues. 
# Probabilistic, adaptiv search over 8 parameters to find local maxima 
#### 
SeekBigEV := proc (MaxCount, RoundsPerParam, Missrate) 
  local count, ParamCount, AdjCount, MaxNums, ParamValueDelta, EVdelta, Missed, Hits, 
        PhiParams, PhiParamsBest, CurrentParam, Delta, EV, EVbest, rndnum, rndParam, 
        Direction, DirectReverses; 
  count := 1; AdjCount := 0; Delta := 1; 
 
  MaxNums := 6^10; 
  # generate a random number from [0,2*Pi): 
  rndnum := evalf(rand(0..MaxNums)*2*Pi/MaxNums, 10): 
  rndParam := evalf(rand(0..7)+1, 1): 
 
  # starting with these random parameters: 
  PhiParams := [rndnum(),rndnum(),rndnum(),rndnum(), rndnum(),rndnum(),rndnum(),rndnum()]:     
  PhiParamsBest := PhiParams: 
  EVbest := -1: Missed := 1; Hits := 1; 
 
  while (count <= MaxCount) do 
    ParamCount := 1; Missed := 1; 
    CurrentParam := round(rndParam()): 
    print ("Param: ", CurrentParam): 
    Direction := 1; 
    PhiParams[CurrentParam] := PhiParams[CurrentParam] + .1; #rndnum()/20: 
    if (PhiParams[CurrentParam] < 0) then 
      PhiParams[CurrentParam] := -PhiParams[CurrentParam]: 
    fi: 
    while (evalf(PhiParams[CurrentParam] 2*Pi)) do 
      PhiParams[CurrentParam] := evalf(PhiParams[CurrentParam] - 2*Pi): 
    od: 
    DirectReverses := 1; 
    #while (DirectReverses <= RoundsPerParam) do 
    while ((ParamCount <= RoundsPerParam) and (Missed < Missrate)) do 
      EV := (GetEigenValues(3, PhiParams, Delta)): 
      #print (EV, PhiParams):  
      if (EV EVbest) then # good change 
        EVdelta := EV - EVbest; 
        ParamValueDelta := PhiParamsBest[CurrentParam] - PhiParams[CurrentParam]+0.0001: 
        EVbest := EV: 
        PhiParamsBest := PhiParams: 
        AdjCount := AdjCount + 1: print (EV, "Phi: ", PhiParams, AdjCount): 
        Missed := 1: 
        Hits := Hits + 1: 
      else 
        Missed := Missed + 1: 
        Hits := 1: 
      fi; 
      if (Missed mod 5 = 0) then 
        Direction := -Direction; # change direction 
        print ("reverse"); 
      fi; 
      PhiParams[CurrentParam] := PhiParamsBest[CurrentParam] + 
            EVdelta/ParamValueDelta*Missed*Hits*Direction; 
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      if (PhiParams[CurrentParam] < 0) then 
        PhiParams[CurrentParam] := -PhiParams[CurrentParam]: 
      fi: 
      while (evalf(PhiParams[CurrentParam] 2*Pi)) do 
        PhiParams[CurrentParam] := evalf(PhiParams[CurrentParam] - 2*Pi): 
      od: 
      if (count mod 50 = 0) then 
        print ("progressing... ", count, " steps"); # how far progressed 
      fi; 
      count := count + 1; 
    od; 
  od; 
end: # of proc 
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Appendix C: Numerical results 
 
As seen in the program in Appendix B the number of numerical valid digits can be arbitrarily high. Te keep track of the 
result we chose Digits := 10. With exacter evaluation the first digits are not affected, in this case it suffices to 
calculate with 10 digits. 
 
  
> # Using distribution from Table 2 
> GetEigenValues(0, [] ); # using distribution L2 
 
            [.31250    .23696    .23696    .28642] 
"rohAB = ", [.23696    .18750    .18750    .23696] 
            [.23696    .18750    .18750    .23696] 
            [.28642    .23696    .23696    .31250] 
"Eigenvalues of rohAB = ", .97391098, .02608902, 0, 0 
"Eigenvalues of rohABt = ", .12500000, .96104596, .01286502, -.09891098 
"Trace of rohAB = ", 1. 
 
> GetEigenValues(1, []); # using distribution L2 

 
            [.31250 , -.23344 - .040686 I , .063441 + .22831 I , -.028158 - .28502 I] 
"rohAB = ", [-.23344 + .040686 I , .18750 , -.080473 - .16935 I , .063439 + .22831 I] 
            [.063441 - .22831 I , -.080473 + .16935 I , .18750 , -.23344 - .040688 I] 
 
            [-.028162 + .28502 I , .063442 - .22831 I , 
                                                     -5 
             -.23344 + .040685 I , .31250 + .64282 10   I] 
                                                   -9 
"Eigenvalues of rohAB = ", .97391098 + .28996933 10   I, 
                                 -10 
        .026089019 + .77308121 10    I, 
                     -9               -11 
        -.23567562 10   + .17046070 10    I, 
                     -11               -11 
        -.51227430 10    + .64982917 10    I 
                                                    -9 
"Eigenvalues of rohABt = ", .96104596 + .19687262 10   I, 
                                -9                             -10 
        .12500000 + .15682310 10   I, .012865017 + .36304280 10    I, 
                                  -9 
        -.098910981 - .10000000 10   I 
                                              -7 
 "Trace of rohAB = ", 1.0000000 + .40608932 10   I 
 
> GetEigenValues(2, []); # using distribution L2 
 
            [.31250 , .096335 + .081192 I , .096335 + .081192 I , .071605 + .12403 I] 
"rohAB = ", [.096335 - .081192 I , .18750 , .18750 , -.11848 - .042838 I] 
            [.096335 - .081192 I , .18750 , .18750 , -.11848 - .042838 I] 
            [.071605 - .12403 I , -.11848 + .042838 I , -.11848 + .042838 I , .31250] 
"Eigenvalues of rohAB = ", .54429451, .45570549, 0, 0 
"Eigenvalues of rohABt = ", .50426549, .04002903, .49637114, -.04066564 
"Trace of rohAB = ", 1.0000000 
 
> # Check negative partial transpose with random defined Phi(x,y,z): 
> Check4npt (500); # using distribution L2 
     "...looking for eigenvalues in rohABt for every Phi(x,y,z):" 
                                ... 
     500, " checked, ", 500, " rohAB are n.p.t., ", 0, " are p.p.t" 
   
> # Using distribution from Table 3 
> GetEigenValues(0, []); # using distribution L3 
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            [.31250    .23176    .24804    .28799] 
"rohAB = ", [.23176    .20313    .16993    .19129] 
            [.24804    .16993    .20313    .23854] 
            [.28799    .19129    .23854    .28125] 
                                        -10              -10 
"Eigenvalues of rohAB = ", -.51480997 10   , .23346120 10   , .052599837, .94740016 
"Eigenvalues of rohABt = ", -.090864779, .027680568, .12777850, .93540571 
"Trace of rohAB = ", 1.0000000 
 
> GetEigenValues(1, []); # using distribution L3 
  
            [.31250 , -.22831 - .039794 I , .066406 + .23898 I , -.028312 - .28659 I] 
"rohAB = ", [-.22830 + .039792 I , .20313 , -.072932 - .15349 I , .051213 + .18431 I] 
            [.066406 - .23897 I , -.072931 + .15348 I , .20313 , -.23500 - .040960 I] 
            [-.028318 + .28659 I , .051216 - .18431 I , 
                                                     -5 
             -.23500 + .040956 I , .28125 + .73465 10   I] 
                                                   -9 
"Eigenvalues of rohAB = ", .94740016 + .24961809 10   I, 
                                 -10 
        .052599837 + .43117600 10    I, 
                     -11               -10 
        -.45497853 10    - .46249579 10    I, 
                     -9               -10 
        -.10264291 10   - .10151001 10    I 
                                                    -9 
"Eigenvalues of rohABt = ", .93540571 + .37176622 10   I, 
                                -9                             -10 
        .12777850 + .24433932 10   I, .027680568 + .82104520 10    I, 
                                  -9 
        -.090864779 - .17821006 10   I 
                                             -9 
"Trace of rohAB = ", 1.0000000 + .41020675 10   I 
 
> GetEigenValues(2, []); # using distribution L3 
 
            [.31250 , .056364 + .10127 I , -.042827 + .16793 I , .20680 + .046877 I] 
"rohAB = ", [.056364 - .10127 I , .20313 , .16993 , -.095645 - .050847 I] 
            [-.042827 - .16793 I , .16993 , .20313 , -.11928 - .15246 I] 
            [.20680 - .046877 I , -.095645 + .050847 I , -.11928 + .15246 I , .28125] 
                                                   -9 
"Eigenvalues of rohAB = ", .71480009 + .10436641 10   I, 
                                -10 
        .28519991 - .14257820 10    I, 
                     -9               -10 
        -.22343504 10   - .29543661 10    I, 
                     -10               -10 
        -.42546571 10    + .27213845 10    I 
                                                     -10 
"Eigenvalues of rohABt = ", -.19622293 + .21007227 10    I, 
                                -10                            -10 
        .57448515 + .72220110 10    I, .43428404 - .15028756 10    I, 
                                -10 
        .18745374 + .20801418 10    I 
"Trace of rohAB = ", 1.0000000 
 
> # Check negative partial transpose with random defined Phi(x,y,z): 
> Check4npt (500); # using distribution L3 
     "...looking for eigenvalues in rohABt for every Phi(x,y,z):" 
                                ... 
     500, " checked, ", 500, " rohAB are n.p.t., ", 0, " are p.p.t" 
  
> # Using distribution from Table 4 
> GetEigenValues(0, []); # using distribution L4 
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Figure 3: Lots of local maxima < 0 

 
            [.25000    .25000    .25000    .25000] 
"rohAB = ", [.25000    .25000    .25000    .25000] 
            [.25000    .25000    .25000    .25000] 
            [.25000    .25000    .25000    .25000] 
"Eigenvalues of rohAB = ", 0, 0, 0, 1. 
"Eigenvalues of rohABt = ", 0, 0, 0, 1. 
"Trace of rohAB = ", 1. 
 
> GetEigenValues(1, []); # using distribution L4 
 
            [.25000 , -.24629 - .042925 I , .066935 + .24088 I , -.024557 - .24880 I] 
"rohAB = ", [-.24629 + .042925 I , .25000 , -.10730 - .22581 I , .066910 + .24088 I] 
            [.066935 - .24088 I , -.10730 + .22581 I , .25000 , -.24628 - .042951 I] 
            [-.024562 + .24879 I , .066914 - .24088 I , 
                                                     -5 
             -.24628 + .042947 I , .25000 + .36733 10   I] 
                                                     -9 
"Eigenvalues of rohAB = ", 1.0000000 + .19330127 10   I, 
                    -10               -10 
        .90494578 10    + .53962778 10    I, 
                     -10               -10 
        -.76558471 10    - .11973942 10    I, 
                     -10               -10 
        -.18747551 10    - .18928511 10    I 
                                                    -10 
"Eigenvalues of rohABt = ", 1.0000000 + .49019238 10    I, 
                    -9               -10 
        .31050426 10   + .38233404 10    I, 
                     -10               -10 
        -.39924318 10    - .20758880 10    I, 
                    -10               -10 
        .56519825 10    - .64596857 10    I 
                                             -7 
"Trace of rohAB = ", 1.0000000 + .23205104 10   I 
 
> GetEigenValues(2, []); # using distribution L4 
 
            [.25000 , .062500 + .10826 I , .062500 + .10826 I , .062500 + .10826 I] 
"rohAB = ", [.062500 - .10826 I , .25000 , .25000 , -.12500] 
            [.062500 - .10826 I , .25000 , .25000 , -.12500] 
            [.062500 - .10826 I , -.12500 , -.12500 , .25000] 
"Eigenvalues of rohAB = ", 0, 0, .37500000, .62500000 
"Eigenvalues of rohABt = ", .53784696, .08715304, .47391098, -.09891098 
"Trace of rohAB = ", 1.0000000 
 
> # Check negative partial transpose with random defined Phi(x,y,z): 
> Check4npt (500); # using distribution L4 
     "...looking for eigenvalues in rohABt for every Phi(x,y,z):" 
                                ... 
     500, " checked, ", 500, " rohAB are n.p.t., ", 0, " are p.p.t"  
 
 

Appendix D: Searching a suitable phase function 
 

 
It is not easy to find, with a numerical approach, a phase function with the 
property that t

ABρ  has only non-negative eigenvalues (if any exists at all). In 

Figure 3 we can see a surface obtained from the function ),...,( 111000 aaf  

returning the smallest eigenvalue of t
ABρ  with respect to the phase ),,( zyxφ  

as defined in  (11) choosing )0,0,0(φ  )1,0,0(φ  and )0,1,0(φ  (i. e., 001000, aa  



 18 

and 
010a ) as parameters within )2,0[ π  and fixing the other 5 parameters to fixed values (see Appendix B). The values 

xyza  correspond to the results for a call of the phase function ),,( zyzφ  used in the algorithm. Figure 3 shows the 

surface with level with 15.0)( −=⋅f . This function has a lot of local maxima less than zero. So it was not possible to 

achieve a separable state 
ABρ  corresponding to ),,( zyxPXYZ

 (table 2)  with the approach by using an adaptive 

probabilistic algorithm (best result 91870000125604)( -.f =⋅ , with less than 500 evaluations). On the other hand a 

search with randomly chosen parameters spread over the unit circle spawned the solution in the proof of Theorem 2, 
where 0)( =⋅f . 
 

Thanks to Stefan and Remo for orthographical corrections... 


