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We assume the reader to have basic knowledge of quantum information (mixed quantum states, density
meatrices, entanglement) and notation. For computer scientists, [7] will be quite a good introduction.
Furthermore, some informationtheoretical knowledge (information-theoretically secure secret-key
agreement, secret-key rate and intrinsic information) isusefulaswell. A good introduction to this can be
foundin [1].

Abstract

One approach to investigating the connection between the quantum and classical casein key agreement
is to start from a quantum state and to study the behaviour of the resulting classical probability
distribution. Gisin and Wolf [3] could show that there is a close relationship between the conditional
mutual intrinsic information [1] and the separability of mixed quantum states. They started with a
guantum state and analyzed the classical outcome after certain measurements. Another approach isto
start with a probability distribution coming from a key generation scenario and find corresponding
guantum states. There is not only one quantum state which matches a chosen classic probability
distribution (similar to the possibility of obtaining different probability ditributions performing
measurement of quantum states with respect to different bases). We show in this documentation that
generating mixed quantum states from classical probability dstributions with no intrinsic information
could lead to entanglement and in some cases to disentanglement, depending on the phase function.
Furthermore we show that the positivity of intrinsic information does not imply that al the
corresponding quantum states are entangled.

Keywords Key agreement, quantum cryptography, quantum privacy amplification, purification,
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1 Introduction

At first sight it is not obvious that quantum information processing is more powerful than classical algorithms. Grover,
however (described in [7] p. 275), as agood example could show in 1998 that searching elementsin a unsorted quantum

database is potentially (unfortunately not exponentially) faster than what classical computers can achieve. This opens
new ways. The secret lies in the quantum states that behave very ‘non-classica’. One bit (binary digit) information in
the classical casein contrast to a, qubit’ (quantum bit) representing a probability between 0 and 1 in the quantum case.

It is easy to see that by measuring one classical register, we have al information that was (and still is) stored in it. On
the other hand, the laws of quantum mechanics restrict the possible measurements to ke carried out. If perfect

measurement were possible then one would be able to clone quantum states and that |eads to a conflict (No-cloning
Theorem, [4] p. 68). Measurement areirreversible an therefore information will get lost. From the physical point of view
we have some particles (photons or electrons for example) and could take their polarization or energy level as state. In
practice it is difficult to handle quantum states because it is amost impossible to protect the state from the

environment. This issue leadsto small errorsthat change the state of the particle. In theory, however, quantum states
can betreated as they were perfect and this often leads to very surprising results.



2 Information-theor etically secure secret-key agreement

In genera it isimpossible to achieve information -theoretically secure secret-key agreement only using authentic, but
completely insecure communication between Alice and Bob. Thisis because if Eve can obtain all the information that
flows from Alice to Bob and back, C,,...C,, than the conditional Shannon-entropy H(S|C,,...G,) of the common secret-
key Sis zero. So Eve can reconstruct the secret-key S. From that point of

view there exists only computationally secure key agreement such as a b
Diffie-HdIman for example. The point is now to have an additional x € R > v
,source’ of information. Using thiswe can use protocolsto finally achieve

unconditionally secure secret-key agreement with arbitrary high e

probability. l

We take this completely classical approach as described in detall in[1] p.
35. We have three parties Alice, Bob, and Eve. Alice and Bob want to
generate a secret key using a random bit generator as source R, for
example a satellite sending random bits as a stream. All Alice, Bob and
Eve are receiving the random bits with certain error bit rates (a,b,e)

depending of the qualitity of the connection from the satellite (see Figure 1). We assume the bits received behave like
coming from a binary-symmetric channel. Than we can formalize this scenario by setting up a joint probability
distribution P, ,(x,y,z). Depending on the error probabilities, this will lead to different distributions (see Appendix

A). Depending on g, b, and e, secret-key agreement with additional public but authentic communication is possible
or not. Itisalittle surprising that a,b can be greater thane andisitisstill possibleto generate acommon secret-key

in spite of the initial drawback of Alice and Bob, using classical privacy amplification. This scenario we take as a
motivation to investigate the distribution P, .

z

Figure 1: Secret-key agreement using
random bits

3 Entangled gatesand intringcinformation

There are severa criteriafor wether quantum privacy amplification (also known as purification) is possible or not. One
of them is the a-entropic inequdity [12] to decide if the state is separable. Peres [9] showed that this criterion is
weaker than the one we consider here. We check the eigenvalues of the partia transpose of the density matrix (defined
in Section 5) for the occurrence of negative values[10, 13]. M., P., and R. Horodecki found that if thereis at least one of
them negative, it is necessary and sufficient condition (if dim(r ., ) = 4) for entanglement (coming from the german
word , verschréankt, mentioned the first time in the early 20" century from Schrédinger). Entangled means that the
mixed quantum state cannot be remotely prepared by classica communication. In this case quantum privacy
amplification (QPA) is possible (how to do so isexplained in [6]) and these mixed states Alice and Bob can be used for
generating acommon secret-key using laws of quantum mechanics.

We will have a closer look at mixed statessuch as r . A stateis called separable (i. e., not entangled) if itis possible

to write its density matrix as a product state such as r s = 5_ pir ATy . Thisisthe caseif the states r A and Mg
]

can be generated by purely classica communication and thus QPA is not possible. If it were, one could generate
entangled states with purely classical communication using these states to generate a secretkey in the quantum
domain by carrying out a quantum protocol. And thisis a contradiction to a generalization of Shannon’s Theorem.

Gisin and Wolf could show in [3] that entangled mixed quantum states are strongly correlated with mutua intrinsic
information. They prove that if a mixed state is entangled then it is possible to generate a common secure secret-key
with using a corresponding classical distribution coming from optimal measurements of this quantum state. They start
with a pure quantum state |Y)T H,AH, AH_ (H, are the 2dimensional Hilbert spaces equal to C?, so |Y )i c®)

and trace out Eve to obtain the density matrix r ., = Tr, (Y). That meansthe Alice and Bob are only looking at their

sub-quantumsystem and make their measurements there in. On one hand, when starting from an entangled state (i. e.,
not separable) the positivity of the intrinsic conditional mutual information I1(X; Y~ Z) is shown. In other words the
possibility of information-theoretically secure key agreement is given in the classical and quantum scenario, no matter
how Eve behaves. On the other hand if the state is separable (i. e., not entangled) the common conditional information
I1(X; Y|2) is zero (hence the common mutud intrinsic information I(X; Y~ Z) is zero as well) and so it is impossible to
generate asecret-key neither in the classical nor in the quantum case.
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4 From classcal digributionsto qguantum states

We now take another approach to establish a connection between classical and quantum key agreement. Gisin and
Wolf showed that there is a connection by assuming quantum states are given, as mentioned in the previous section.
Now we start with a classical probability distribution (perhaps coming from a quantum scenario) and end up with
gquantum states. As we said before, measuring a quantum system destroys it and we ,only* get classical information
from it. It is hence not surprising that one distribution corresponds to many, somehow related quantum states as we
will see. By getting classical information we have to measure a quantum system with certain bases that leads to the
following equation:

Pez (X,Y,2) = |(x y.ZY )|2 . D
Theresult of ameasurement isarealization of the probability distribution corresponding to the state |Y) by measuring
in certain bases {| x)}i H, {| y)}i Hg» {| z)}i H ., respectively. When measuring, we have to use observables. The
standard basis {]0)|1)} (also known as computational Alice Bob Eve

basis) as one observable or the dual basis (also called X Y Z

Hadamard basis) {|0),| )} ={75(0) +|1)). z (0)- [} 1(X,Y ™ 2)>0?

as an another observable are two examples of
orthonormal measurements

({la)la)}i H(a]a)=00 |a)a,) aeothogona, Py (X, Y.2)

if (a,|a,) isscaar product in H?). Measurements are measurement

hermitian and the result is an eigenvalue of the phase function

corresponding projection operator. This eigenvalue f (XY, Z)T [0,20) (ﬂ X>},ﬂ y>},{| Z>})
belongs to the associated eigenvector, for example T H2” H2  H2
|0)=(1,0) or |1)=(0,1)" in the standard basis. In the A B TE

case of a single qubit |j }=1,[0)+1,|1) (quantum |YABC>
states are defined in Section 6) the probability to TrHE
measure the state | 0) is|l ,|* in the standard basis. Itis

important to note that after the measurement the state I e

falls to one of the eigenvectors and the superposition

vanishes. / \

If we want to find a quantum state corresponding to a ]

specific classical distribution P, (x,y,z), we have to Alice Bob
define a phase f (x,y,2)I [0,2p) for each state & engiement?

|xy,2) (we abbreviate |x)A|y)A|2) by |xy,z), A
stands for the tensor product) to create a quantum  — o

state. Our goal is to investigate the effect of the choice of the phase function for the discussed connection between
the classical and quantum world.

5 How tofind corresponding quantum states

By ‘generating’ a quantum state we must have a close look at the possible measurements. As we stated before,
measuring a quantum state is equivalent to taking an instance of a certain probability distribution P (x,y,z) with

X =Y =Z ={01 . Now we have to rebuild the whole sample space from all the events that could be happen. We have

to summarize all possible outcomes with the corresponding probability. By definition (see[4, 9]) we have
V)= &c, . H.ik) @
(i, jLk)IXYZ

with



c"jvki C. 0£|Clvi,k|2£1and é~|Ci,j,k|2:]' ©
i,j.k

to | Y > be a valid quantum state. We have to insert the classical information coming from the distribution. We know

the probability of being measured from each state. We seethat every
Cra] =Pz (%Y:2) (@)

because of (1), (2) and (3). Then quantum states can be described as vectors of unit length in aHilbert space (C =C?).
Because of this we have one more degree of freedom to define our quantum state. There exists not only one |Cx_y‘z g

satisfying (4). For every potentia state we have to define a phase which sets the direction of the vector in the Hilbert
space. This is done with the phase function f (x,y,2)1 [0, 2p) in the factor &**»?, which satisfies of course

=1. Now we can completely describe our state with the following summation
|Y)= qe P, (xYy.2) qx,y, 2)- ©)
(xy,21X Y Z
At the moment we know almost nothing about influences of the phase function. This will be the subject of our

investigations.
We will study the behaviour of the eigenvalues of the partial transpose of r . Inthis special case we do not need to

generate the state |Y from (5) with tracing out Alice with r,. =Tr, (Y ) (see Figure 2). We can directly

|en(xy1)

ABE>
produce the state r ,, by using the conditional probability distribution p

XY|Z

(x,y|z) obtained fromP,,(x,y,z). We
compute | Y, ) and | Yl) for both possible measurements 0 and 1 of Eve. Thisisdone with

Y.)= Qe 2 B (xyTD4xy) ©

X XY
for z equal 0 and 1. We want to investigate the density matrix of the mixed state r
of (6) P, =|Y,XY,| and build the density matrix r ,, for asfollows:

50 SO We have to use the projectors

Mo =8 P(2) P, - @
1z

It is obvious that at most two of the four eigenvalues of r ,, can be different from O (and of course at least one). This
is because this mixed state is a statistic mixture of two the pure states |Y0> and |Y1>- If these two states are not
equivaent, that will lead to the fact that exactly two eigenvalues are different from O (if two eigenvalues are equal then
they are counted twice).

Now we have completely defined the mixed state (7) we will check for entanglement. Onereally efficient way to do so is
by calculating the partial transpose and check this matrix for negative eigenvalues[13] as mentioned above. If thisnew
matrix r L, has at least one negative eigenvalue then r . is called with negative partial transpose. We define the

partial transpose in general and have a closer look to the much easier case with dm(H ,) =dim(H,) isequal to 2. We

rewrite r ., as (r . Now we can define the partial transpose as (r! , just transposing the

AB )nm.n-n AB)mmm = (r AB)nmrm

Latin indices, but not the Greek ones [9]. This is no unitary transformation, but a hermitian one. In our case when
dm(H ) =dim(H,) =2 it is very easy to calculate it, only by transposing the four 2 2 sub-matrices of r ,_ (see

Appendix B). When the dimension of the Hilbert spaces is equal to 2, we are very lucky, because negative partial
transpose of r . implies entanglement and vice versa [9]. Now we are going ahead by checking several phase

functions and studying the behaviour of the eigenvalues of the partial transpose.

6 Linking classcal and quantum scenarios

Wewant P, (x,y,z) with I(X; Y~ Z) > 0 on one hand and entangled states on the other hand for the key-generation
phase. Now we start with the classical probability distribution P, (x, y,z) and build the density matrix r , to check if
it has negative partial transpose to see if r ,, is entangled or not. It is proven in [14] that r ,, can be purified

(quantum privacy amplification is possible) if the mixed state is not separable (i.e., entangled). We only consider the
case where dm(H,) =dim(H,) =dm(H_) =2. We define a class of functions f _,(xy,2) that alows us for

generating related, but different quantum states from one classical probability distribution. Related means that we can
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see in all those states that the eigenvalues of r ! remain the same, how ever the parameters{a,,.., a } arechosen. By

defining a special class of functions f (3, we show with a numerical evaluation that the eigenvalues of the partia

transpose of the density matrix of our states are the same using certain probability distributions (yet not in general).
Asthe easiest example we consider the phase function

f @ (xy,2=0. ®
That means nothing else than that the phase is independent from x y and z respectively and equal 0. The density

matrix will have rea entries only. Sometimes it is useful to take the state generated by the phase function (5) as
reference to compare the other outcomes (see Appendix A for alist of the tablesand Appendix C for results).
We consider the following phase function by using a linear combination of inputs x, y,z with completely random

coefficients (a,, a,,a,)1 4 R,

fla oy (% Y 2) = (@X+ Y +8,2) Yoy vaa) P ©)
It is obvious that £  _ (xy,2) liesin theinterval [0,2p), so that this is a valid phase function. We will
conjecture in Appendix C the somewhat surprising fact that eigenvalues of r . do not change; that is possible

because of the special character of (9) as a linear function in its parameters. This eigenvalues depend only on
P, (X y,z). But it is more nteresting, that the eigenvalues of r !, remain the same, although al of r ,, matrix

elements change, and so does the statistic mixture.
Now we chose another function:

f (2)(Xy)’az):(Xxy+yxZ+X>q)%p' (10)
No additional parameters are needed for our purpose. We will see in Appendix C that f (3 will generate a valid
quantum state as well (Tr(r ;) =1), butin this case the eigenvalues of r:_ aredifferent (wavy underlined) compared

to those calculated with (8) or (9). However there still exists one negative eigenvalue that shows the corresponding
quantum stateis still entangled.
The question is now if there exists (at least for the distribution given in table 2) any function f ©)(3 that turns out a

completely non-negative set of eigenvaluesof r ..

We are approaching this problem by generating severa phase functions f ) (x, y, z7) with comletely random behaviour.
There exist exactly 8 different outcomes within a parameter range (x,y, )1 {0,3° for f ®(x,y,z) . We define the
function

(3) —
f{aooov3001-"’o10*aouvamovawralmalu) (X’ Y Z) - axyl ! (11)

with the parameters a,,...,a,,;, 1 [0,2p) asa completely general function. The parameters are chosen randomly within
the interval [0,2p) . We will numerically calculate partial transpose using hundreds of different f 8)(x, y,2) (. e,
different randomly chosen paraneters Qgogrerns Byqy TOT eachf E?(X, y,2) ) and check if it has positive partial transpose. It
is performed with Maple V as listed in Appendix B. With this approach by randomly chosing 500 different phase

functions we did not find a mixed quantum state that does not have negative partial transpose using (11). In other
words, we cannot easily find a phase function f (3 that generates a mixed state r ,, from the distribution defined in

table 2 with I(X; Y~ Z) > 0 that is not entangled. But we found some phase functions for which the corresponding
density matrix is separable by using only phasesthat are multiplesof j;p (see Theorem 2, Sedion 7).

Now let us consider adistribution as depicted in table 4 with [(X; Y™ Z) = 0 (hence S(X; Y|1Z2) =0, [1]). Inthiscase Alice
and Bob cannot use these random bits coming from the random bit source to generate a secret-key. We will generate

mixed quantum states r ,, with these different phase functions (8), (9), (10) and (11). Using (8) we have exactly one

eigenvaluein r . andthereforeitisequal to 1. r ,, has positive partial transpose and thus we have no entanglement,

and can be written as 3 Py Arg This separable state r ,, can be generated by purely classical
J

I

communication and therefore QPA isimpossible.
The special casethat r ,, has exactly one eigenvalue, namely 1 (Appendix C) is evident. We have equivalent states

|Y,) and |Y,) which is a consequence that P, (x,y,z) is completely symmetric and f (¥ is equal to 0. Generating
r .5 With (7) will therefore lead to a pure state.
Now we use phase function (9) and at the first sight we are very surprised about the behaviour of the eigenvalues of

r's in the quantum domain. The number of eigenvalues of r,, is, as expected, 2. But r |, has one negative



eigenvalue in contrast to the example above using the phase function (8). That meansthat r ,, isentangled and QPA
can be applied. Now we have positive partial transpose on one hand by using f @ (x,y, z) = 0 and negative partial
transpose on the other hand by using f<(ila2,a3> (x,y,2) asanother phase function. With [3] keeping in mind, this will
lead to the assumption that there must be a close connection between choosing a basis when performing a

measurement and choosing a phase function when finding corresponding quantum states. We can state that there
must be ‘better’ and ‘worse’ choices for phase functions f (x, y, z) . We can show this in the example when starting

from P, (x,y,z) asdescribed in table 4 with I(X; Y~ Z) = 0. There exists at least one ‘bad’ choicefor f (x,y, z) inthe

meaning that the generated quantum state will be not entangled and alot of ‘good’ choices. (8) is such a bad choice.
All the other choices considered and calculate in Appendix C lead to a quantum entanglement such that QPA is
possible.

The following conjecture has its reverse counterpart as mentioned above. Theorem 1 stated in [3] shows if r ,, is

separable (i. e., not entangled) then there exists a generating set {| z>} I H.,suchthat I(X; Y|Z) =0, how ever Aliceand
Bob choose their bases {| x)}i H, and {| y>}i H - Our conjectureis that for one distribution with I(X; Y~ Z) = 0 (see
Appendix A, table 4), there exists a at least one phase function f (x,y,z) so that f (¥ isentangled and hence QPA is

possible (see Section 7). In general, arbitrary chosen phase function lead to entanglement.
Furthermore, our conjectureis now that for distributionswith I(X; Y~ Z) >0 (e. g. Appendix A, table 2), thereexistsaat
least one phase function f (x,y,z) suchthat r ., isentangled and hence QPA is possible. Thisis similar to Theorem 2

in [3] that saysif f (¥ isentangled then there exist generating sets {| x)}i H, and {| y)}i H, for Alice and Bob, such
that 1(X; Y~ Z) > 0, however Eve chooses her basis{|2)}1 H..

7 Condusons

Our main conlcusion is that, like the choice of the measurement bases in [3], the choice of the phase function when
linking classical and quantum privacy amplification is crucial and must be closely studied.

Our observations lead to the following results:

In the statements below let YT H,AH, AH_ with dim(H,)=dm(H,)=dm(H_) =2 be a quantum state
corresponding b a probability distribution P, (x,y,2), (x,Y,2)T XY~ Z with respect to a phase function
f (X, Y, Z)T R[o,zp) ,andlet r B = TrHE(PY) '

Observation 1 The eigenvalues of r . and its partial transpose r ), depend on the choice of the phase function
f(xy,2)-

Thisis suggested by numerical evaluations of the distribution described in tables 2, 3 and 4 using the phase functions
(10) and (12).

We conjecture that for every P, (xy,z), the class of phase functions f___.(xy 2=
(X +a,Y + 8,Z) X3fs sara) P » With parameters (a,,a,,a,)1 R}, satisfies the property that the eigenvalues of r
and its partial transpose r |, are equal for every choiceof a ,a, and a, . Thisis suggested by numerical evaluations of
the distribution described in tables 2, 3 and 4 using the phase function defined in equation (9).

Conjecture 1 For every B, (x,y,z) with I(X; Y|Z) = O there exists a phase function f(xy,z) such that r ,, is
separable.

We find an example that satisfies conjecture 1 by using the probability distribution in table 4 and the phase function
defined in equation (8). However, most of times we ended in an entangled quantum state choosing an arbitrary phase
function for every probability distribution weinvestigated. Thisisrelated to Theorem 1in[3].

Conjecture 2For every B, (x y,z) With I(X; Y~ 2Z) > 0 there exists a phase function f (x,y,z) such that r ,; is
entangled.



This is similar to Theorem 2 in [3] but starting with a probability distribution in contrast to starting with a quantum
state. Thisis suggested by the example with the distribution described in table 2. For both conjectures 1 and 2 it is not
obvious that they follow from Theorems 1 and 2 respectively, because there can exist classical probability distributions
which do not result from optimal measurements.

We observed that for a P, ,(x,y,z) with I(X; Y|Z) > 0 itis hard to find a phase function f (x, y,z) such that r . is

separable with a numerical approach. The numerical search for phase functions f (x, y, z) that satisfies the condition
that all eigenvalues of r!_ corresponding to a arbitrary P, (x,y,z) with I(X; Y[Z) > O are not negative is not easy in
general (see Appendix D). There can be found a lot of negative eigenvalues close to 0. However, most of times we

ended in an entangled quantum state choosing an arbitrary phase function for every probability distribution we
investigated.

Theorem 1 There exists at least one P, (x,y,z) with I(X; Y|Z) = 0 and a phase function f (x,y, 7) suchthat r ., is
entangled and can be purified.
Proof. In the probability distribution P, (x,y,z) described intable 4is1(X; Y|Z) = 0 because P, (x) and R,(y) ae
uniformly distributed. The eigenvalues of the partial transpose r ., of the density matrix

& % Y S

& 0 % ou

& 0 0 %i
with respect to P, (x,y,z) and to the phase function f (x,y,2) =(xxyxz)>p sdtisfies det ' -11,)=0 [9.
| =% (1- +/3) isone of these eigenvalues and less than 0. Therefore r ,, has negative partial transpose and hence
entangled. O

Theorem 2 There exists at least one P, (x, y,z) with I(X; Y~ 2) > 0 and a phase functionf (x,y, z) suchthat r ,; is
separable and can not be purified.

Proof. In the probability distribution P, (x, y, z) describedintable2isI(X; Y™ Z) > 0 because both P, (x) and P, (y)
are not uniformly distributed and therefore classical privacy amplification can be applied. We write Poz(X, Y12 =
2R, (x,y,2) because P,(2=p for zi{01. By using the phase function f(xy,2)=f  with
(F oo 1) =00, %P %p.p.0.3%p, 4p)  We will get |Y,)= (47, /3% .- %i\B.%3%) and |Y,)=
(}{1«/5,}{1«/5 ﬁ,%«/:_s,%ﬁxi) by using |Yz) = é ei*”q/m >1x, y>. The corresponding projectors

x, ) {0,}
€ Ko A2 - f2L - Y2040 Ho Ho Ao Fo2Lxl
_& 16"/Z>‘j Hs He X - Hs - HeX Hs - HoX }{s“lz u

R, =5 MV . 4
’ g'%e 21 '%6" %e %6” 3

@%s"/zxi - X - Ao X He s}

weobtanwith P, =|Y,KY,|. Wefindr ,, =%(R, +P,) &

P, =

Y1

@ @ D D D D

Hs Ao Hs  HeJ21%0U
}{G—JZX' %SJZ '%SJZXI %6 E

é %6 %2(‘lz+3)>4 }éz("\/z+3) 0 LI
_ Fl - V21- 3)% % 0 Yl N21-3)
© 8 K- 2L+ 3) 0 %o Yol JZL+3) 51
é 0 Yo(W21-3)  ¥%,(- J21- 3)% A 6

We transposing the four sub-matricesof r,, we get r!,. The eigenvalues |, of r, we get by solving
det( 'y - 11,)=0 [5]. By straight on solving we find | *- 13+ %12 =00 ¥%1?(2 - 1)? and sothe eigenvaluesare 0
and ¥ , each occurring twice. Therefore r , . has positive partial transpose and hence separable. O

Thechoice (0,0, 4p,%p.P0. %P, %p) for (f,,...f,,,) iSnottheonly onethat |eadsto disentanglement in Theorem

2. For the sets (0,00,0,p,0,0,p). (P.p.P.0.00,p,0). (0, %p,%pP.00 %p, ¥p0) and (0, %P,00 %p.p.p) for
example, the corresponding density matrix r ,, has positive partial transpose as well.
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Similarly to the case where quantum states are given and measurementsin certain bases are performed, thereisno clear
connection between the quantum and the classical regime yet. When measuring a quantum state we can only make a
statement under the assumption of optimal measurements in the sense of choosing on good basis. As we showed in
this paper by considering quantum states corresponding to classical probability distributions it only makes sense to
speak of linking the quantum and the classical domain in connection with suitable phase functions (whereit isnot clear
what suitable means).
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Appendix A: Common probability digributions

v X(Z) 0 1
0 @ a’@q-e+a’e (0) a(l- a)
0 (1) @-a’e+ta’(-e (1) a(l- a)
(0) a(l- a) 0) @-a)’e+a’(l-e
! (1) a(l- a) (1) @-a)y@-e+a’e

Tablel: General common probability distribution in the satellite scenario for Alice,
Bob and Eve with the corresponding error bit rates g b and erespectively.

The distribution must be normalized by the factor .

v X(Z) 0 1
© 7 © 3

° 3 ® 3
(0) 3 (0) 3

S ey 3 (1) 7

Table2: Common probability distribution from Table 1 with the corresponding error
bit rates with g = b= % and e= ¥, . The distribution must be normalized by

thefactor y,. Both I(X; Y~ Z) > 0 and S(X; Y|Z) > 0 [1] so that secret-key
agreement is possible.

X
Y (@ 0 1
(0) 3 (0) 1
° o 7 @ 5
(0) 4 (0) 1
ey 2 ® 8
Table3: Random probability distribution. The distribution must be normalized by the
factor y,.
X
v 2 0 1
(0) 1 (0) 1
° 1 @ 1
(0) 1 (0) 1
Iy 1 @ 1

Table4: Probability distribution derived from table 1 with a=b=y% and e=y
(norming factor  3). Obviously I(X; Y~ Z) = S(X; Y|Z) = O, therefore no
secret-key agreement is possible.
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Appendix B: Maple program

This Program was running on Maple V Release 5 Verson 500 with Intel
Get Ei genVal ues( x, x) took lessthan half asecond.

# Using |inear
restart:

al gebra libraries:
with(linalg):

HitH#t

# Function to generate quantum states, show their density matrix,
# eigenval ues of rohAB and rohABt using different phase functions.
HitH#t

Get Ei genVal ues : = proc (phasefn, PhasePhi)

# Environnments:

local L2, L3, L4, Lnorm Pxyz, phi, Pz, Phiz0, Phizl, EV, x1, y1, X,
P_Phi z0, P_Phizl, rohAB, Allt, Al2t, A21t, A22t, rohABt, i, nm nEV
# Nunber of valid digits+1:

Digits := 10:

# Classical distribution:

433. 1 precedure

Y,

see Table 3

L2 :=[[[7,3],[3,3]],[[3,3],[3,7]]]: # see Table 2

L3 :=[[[3,7],[4.5,2]],[[1,5.5],[1,8]]1]: # randumdistribution,

L4 :=[[[4,4],[4,4]]1.[[4,4],[4,4]]1]: # see Table 4

# s = sum(sum(sum(L[i][j][k],i=1..2),j=1..2),k=1..2); # norming factor
Lnorm := L2/32; # choosing L2, L3 or L4

Pxyz := array(0..1, 0..1, 0..1, Lnorm:

# Defining Phase for

phi := proc (x, y, z)
if (phasefn = 0) then
# all values al, a2 and a3 are equal to zero:
0;
el se
if (phasefn = 1) then
# values for al, a2 and a3 for linear conbination:
(0.3626242 * x + 0.924623 * y + 0.4657161 * z)
Pi ;
el se
if (phasefn = 2) then
# no coefficients product of two paranmeters:
(x *y +y *z+x*2z)* 2/3* Pi;
el se
# chosen entries for phi comng from2nd paramer in |ist:
PhasePhi [ 4*x + 2*y + 1*z + 1];
fi;
fi;
fi;
end;

# Get probability distribution of z:

Pz := proc(zp) Sum(Sum(Pxyz[xp,yp,zp], "'yp'=0..1), 'xp'=0..1) end;
# Cal cul ating the quantum states Phiz0 and Phizl:
Phiz0 := array(1l..1, 1..272);Phizl := array(1..1,
for x fromO to 1 do
for y fromO to 1 do
Phi zO[ 1, x*2+y+1] :=
od
od;
# and the sanme for Phizl:
for x fromO to 1 do

1..272):

exp( | *phi (x,y, 0))

1

conversion from Classic distribution to Quantum state:

* sqgrt(Pxyz[x,y,0] / Pz(0))

cdl

* 2/ (0.3626242+0. 924623+0. 4657161)

of



for y fromO to 1 do
Phiz1[ 1, x*2+y+1] := exp(l*phi(x,y,1)) * sqrt(Pxyz[x,y,1] / Pz(1))
# ...is that right?
od
od;

# Creating projectors:
P_Phi z0 : = transpose(conjugate(Phiz0)) & Phiz0: eval n{ P_Phi z0);
P_Phiz1 := transpose(conjugate(Phiz1l)) & Phizl: eval n(P_Phizl);

# Generating the mxed state:
rohAB : = eval n(Pz(0) * P_Phiz0 + Pz(1) * P_Phizl):# print("rohAB =", evalf(% 5));

# print rohAB:

if (phasefn <3) then # verbose out put
print("rohAB = ", evalf(% 5));

fi;

# print eigenval ues of rohAB:
ei genval ues(eval f (rohAB)):
if (phasefn <3) then # verbose out put
print ("Eigenvalues of rohAB =", evalf(% 8));
fi;

# Cal cul ate partial transpose of m xed state rohAB:

Allt := transpose(del col s(del rows(rohAB, 3..4), 3..4)): Al2t :=
transpose(del col s(del rows(rohAB, 3..4), 1..2)):
A21t := transpose(del col s(del rows(rohAB, 1..2), 3..4)): A22t :=

transpose(del col s(del rows(rohAB, 1..2), 1..2)):
rohABt := stackmatrix (concat (Allt, Al2t), concat (A21lt, A22t))

# and finally get Eigenvalues 2 check if rohAB has positive partial transpose
EV : = ei genval ues(eval f (rohABt)):
if (phasefn <3) then # verbose out put
print ("Eigenvalues of rohABt = ", eval f(EV, 8));
fi;
# and verify that rohAB is a valid quantum state:
if (phasefn <3) then # verbose out put
print ("Trace of rohAB = ", eval f(trace(rohAB), 8));
el se
mnEV : = Re(EV[1]);
for i from2 to 4 do # returns the smallest eigenval ue of rohABt
if (Re(EV[i]) < mnEV) then
mnEV := Re(EV[i]);
fi;
od; # postcondition: mnEV := mn (Re(EV[1]),...,Re(EV[4]))
m nEV,
fi;
end;

it
# Define random Phi(x,y,z) and show if rohABt is
# negative or positive partial transpose

HHHH
Check4npt := proc (nuns) local j, rndnum EV, count, MaxNums, Phi Parans:
count := 0; MaxNuns := 10710;

# generate a random nunber from [0, 2*Pi):
rndnum : = eval f (rand(0. . MaxNuns) *2*Pi / MaxNuns, 10); # MaxNuns := 4 is a good choice for
table 2

print ("...looking for eigenvalues in rohABt for every Phi(x,y,z):");
for j from1l to nums do
Phi Params : = [rndnum(), rndnun(), rndnun(), r ndnun(),
rndnun(), rndnum(), rndnum(), rndnum() ] ;
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EV : = (GetEi genVal ues(3, PhiParans)):
if (EV >=0) then # print only positive partial transpose

count := count + 1: print (EV, "Phi: ", PhiParans);
fi;
if (j nmod 50 = 0) then
print ("checked ", j); # how far progressed
fi;
od;
print (nums, " checked, ", nuns - count, " rohAB are n.p.t., ",count, " are p.p.t");
end; # of proc
#Hit##t

# Searching for eigenval ues.
# Probabilistic, adaptiv search over 8 paraneters to find |ocal nmaxi m
HitH#t
SeekBi gEV : = proc (MaxCount, RoundsPerParam M ssrate)
| ocal count, ParanCount, AdjCount, MaxNums, ParanVal ueDelta, EVdelta, M ssed, Hits,
Phi Paranms, Phi ParansBest, CurrentParam Delta, EV, EVbest, rndnum rndParam
Direction, DirectReverses;
count := 1; AdjCount := 0; Delta := 1;

MaxNums = 6710;

# generate a random nunber from [0, 2*Pi):

rndnum : = eval f (rand(0.. MaxNuns) *2* Pi / MaxNuns, 10):
rndParam : = eval f(rand(0..7)+1, 1):

# starting with these random paraneters:

Phi Paranms : = [rndnum(), rndnum(), rndnunm(), rndnum(), rndnum(),rndnunm(), rndnum(), rndnun()]:
Phi Par anmsBest : = Phi Parans:

EVbest :=-1: Mssed :=1; Hits := 1,

while (count <= MaxCount) do

ParanCount := 1; M ssed := 1;
Current Param : = round(rndParam()):
print ("Param ", CurrentParan:
Direction := 1;
Phi Par ans[ Current Parani : = Phi Parans[ CurrentParan] + .1; #rndnun()/20:
i f (PhiParams[CurrentParanm < 0) then
Phi Par ans[ Current Paran] : = -Phi Parans[ Current Paran :
fi:
whi | e (eval f (Phi Params[ CurrentParan] 2*Pi)) do
Phi Par anms[ Current Paran] := eval f (Phi Parans[ CurrentParam - 2*Pi):
od:
Di rect Reverses : = 1,

#whil e (Direct Reverses <= RoundsPer Paran) do
whil e ((ParanCount <= RoundsPerParan) and (M ssed < Mssrate)) do
EV : = (GetEi genVal ues(3, PhiParanms, Delta)):
#print (EV, PhiParans):
if (EV EVbest) then # good change
EVdelta := EV - EVbest;
Par amval ueDel ta : = Phi ParansBest [ Current Param - Phi Parans[ Current Parani +0. 0001:

EVbest := EV:
Phi Par ansBest : = Phi Par ans:
Adj Count := Adj Count + 1: print (EV, "Phi: ", PhiParans, AdjCount):
M ssed : = 1:
Hits := Hts + 1:
el se
M ssed := Mssed + 1:
Hts := 1:

fi;
if (Mssed nod 5 = 0) then
Direction := -Direction; # change direction
print ("reverse");
fi;
Phi Par ams[ Current Param : = Phi ParansBest[ Current Parani +
EVdel t a/ Par anVal ueDel t a*M ssed*Hi t s*Di recti on;
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i f (PhiParanms[CurrentParam < 0) then

Phi Par ans[ Current Paran] : = - Phi Par ans[ Curr ent Par ani :
fi:
whi | e (eval f (Phi Parans[ CurrentParam 2*Pi)) do
Phi Par ams[ Current Param : = eval f (Phi Parans[ Current Paran] - 2*Pi)
od:
if (count npd 50 = 0) then
print ("progressing... ", count, " steps"); # how far progressed
fi;
count := count + 1;
od;

od;
end: # of proc
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Appendix C: Numerical results

As seen in the program in Appendix B the number of numerical valid digits can be arbitrarily high. Te keep track of the
result we chose Di gi ts : = 10. With exacter evaluation the first digits are not affected, in this case it suffices to
calculate with 10 digits.

> # Using distribution from Table 2
> Get Ei genVal ues(0, [] ); # using distribution L2

[.31250 . 23696 . 23696 . 28642]
"rohAB = ", [.23696 . 18750 . 18750 . 23696]
[.23696 . 18750 . 18750 . 23696]
[.28642 . 23696 . 23696 . 31250]
"Ei genval ues of rohAB = ", .97391098, .02608902, 0, O
"Ei genval ues of rohABt = ", .12500000, .96104596, .01286502, -.09891098
"Trace of rohAB = ", 1.

> Cet Ei genVal ues(1, []); # using distribution L2

[.31250 , -.23344 - .040686 | , .063441 + .22831 | , -.028158 - .28502 1]
"rohAB = ", [-.23344 + .040686 | , .18750 , -.080473 - .16935 1 , .063439 + .22831 I]
[.063441 - .22831 | , -.080473 + .16935 | , .18750 , -.23344 - .040688 |]
[-.028162 + .28502 | , .063442 - .22831 1| ,
-5
-.23344 + .040685 | , .31250 + .64282 10 1]
-9
"Ei genval ues of rohAB = ", .97391098 + .28996933 10 |
-10
. 026089019 + . 77308121 10 I,
-9 -11
-. 23567562 10 + .17046070 10 I
-11 -11
-.51227430 10 + .64982917 10
-9
"Ei genval ues of rohABt = ", .96104596 + .19687262 10 |
-9 -10
. 12500000 + . 15682310 10 I, .012865017 + .36304280 10 I,
-9
-.098910981 - .10000000 10 I
-7
"Trace of rohAB = ", 1.0000000 + .40608932 10
> Get Ei genVal ues(2, []); # using distribution L2
[.31250 , .096335 + .081192 | , .096335 + .081192 | , .071605 + .12403 |I]
"rohAB = ", [.096335 - .081192 | , .18750 , .18750 , -.11848 - .042838 |]
[.096335 - .081192 | , .18750 , .18750 , -.11848 - .042838 |]
[.071605 - .12403 | , -.11848 + .042838 | , -.11848 + .042838 | , .31250]
"Ei genval ues of rohAB = ", .54429451, .45570549, 0, O
"Ei genval ues of rohABt = ", _50426549, .04002903, .49637114, -.04066564
"Trace of rohAB = ", 1.0000000

> # Check negative partial transpose with random defined Phi(x,Yy, z)
> Check4npt (500); # using distribution L2
"...looking for eigenvalues in rohABt for every Phi(x,y,z):"

500, " checked, ", 500, " rohAB are n.p.t., ", 0, " are p.p.t'

> # Using distribution from Table 3
> Get Ei genVal ues(0, []); # using distribution L3
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[.31250 . 23176 . 24804 . 28799]
"rohAB = ", [.23176 . 20313 . 16993 .19129]
[.24804 . 16993 . 20313 . 23854]
[.28799 . 19129 . 23854 . 28125]
-10 -10
"Ei genval ues of rohAB = ", -.51480997 10 , .23346120 10 , . 052599837, .94740016
"Ei genval ues of rohABt =", -.090864779, .027680568, .12777850, .93540571

"Trace of rohAB = ", 1.0000000

> Get EigenValues(1, []); # using distribution L3

[.31250 , -.22831 - .039794 | , .066406 + .23898 | , -.028312 - .28659 1]
"rohAB =", [-.22830 + .039792 | , .20313 , -.072932 - .15349 | , .051213 + .18431 1]
[.066406 - .23897 | , -.072931 + .15348 | , .20313 , -.23500 - .040960 1]
[-.028318 + .28659 | , .051216 - .18431 | ,
-5
-.23500 + .040956 | , .28125 + .73465 10 1]
-9
"Ei genval ues of rohAB = ", .94740016 + .24961809 10 |
-10
. 052599837 + .43117600 10 I,
-11 -10
-.45497853 10 - .46249579 10 |
-9 -10
-.10264291 10 - .10151001 10
-9
"Ei genval ues of rohABt =", .93540571 + .37176622 10 |
-9 -10
. 12777850 + .24433932 10 |, .027680568 + .82104520 10 I,
-9
-.090864779 - .17821006 10 |
-9
"Trace of rohAB = ", 1.0000000 + .41020675 10 |

> Cet Ei genVal ues(2, []); # using distribution L3

[.31250 , .056364 + .10127 | , -.042827 + .16793 | , .20680 + .046877 1]
"rohAB = ", [.056364 - .10127 | , .20313 , .16993 , -.095645 - .050847 |]
[-.042827 - .16793 | , .16993 , .20313 , -.11928 - .15246 1]
[.20680 - .046877 | , -.095645 + .050847 | , -.11928 + .15246 | , .28125]
-9
"Ei genval ues of rohAB = ", .71480009 + .10436641 10 |
-10
. 28519991 - . 14257820 10 I,
-9 -10
-.22343504 10 - .29543661 10 I,
-10 -10
-.42546571 10 + .27213845 10
-10
"Ei genval ues of rohABt = ", -.19622293 + .21007227 10 I,
-10 -10
. 57448515 + .72220110 10 |, .43428404 - .15028756 10 |
-10

.18745374 + .20801418 10
"Trace of rohAB = ", 1.0000000

> # Check negative partial transpose with random defined Phi(x,y, z):
> Check4npt (500); # using distribution L3
"...looking for eigenvalues in rohABt for every Phi(x,y,z):"

500, " checked, ", 500, " rohAB are n.p.t., ", 0, " are p.p.t"

> # Using distribution from Table 4
> Get Ei genVal ues(0, []); # using distribution L4
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[. 25000 . 25000 . 25000 . 25000]
"rohAB = ", [.25000 . 25000 . 25000 . 25000]
[.25000 . 25000 . 25000 . 25000]
[.25000 . 25000 . 25000 . 25000]
"Ei genval ues of rohAB =", 0, 0, 0, 1
"Ei genval ues of rohABt =", 0, 0, 0O, 1.
"Trace of rohAB = ", 1.

> Get Ei genVal ues(1, []); # using distribution L4

[.25000 , -.24629 - .042925 1| , .066935 + .24088 | , -.024557 - .24880 1]
"rohAB = ", [-.24629 + .042925 1 , .25000, -.10730 - .22581 | , .066910 + .24088 I]
[.066935 - .24088 | , -.10730 + .22581 | , .25000 , -.24628 - .042951 |I]
[-.024562 + .24879 | , .066914 - .24088 | ,
-5
-.24628 + .042947 | , .25000 + .36733 10 1]
-9
"Ei genval ues of rohAB = ", 1.0000000 + .19330127 10 |,
-10 -10
. 90494578 10 + .53962778 10 |
-10 -10
-.76558471 10 - .11973942 10 |
-10 -10
-.18747551 10 - .18928511 10 |
-10
"Ei genval ues of rohABt = ", 1.0000000 + .49019238 10 |
-9 -10
. 31050426 10 + .38233404 10 I,
-10 -10
-.39924318 10 - .20758880 10 |
-10 -10
. 56519825 10 - .64596857 10 |
-7
"Trace of rohAB = ", 1.0000000 + .23205104 10 |

> Get Ei genVal ues(2, []); # using distribution L4

[.25000 , .062500 + .10826 | , .062500 + .10826 | , .062500 + .10826 1]
"rohAB = ", [.062500 - .10826 | , .25000 , .25000 , -.12500]
[.062500 - .10826 | , .25000 , .25000 , -.12500]
[.062500 - .10826 | , -.12500 , -.12500 , .25000]
"Ei genval ues of rohAB = ", 0, 0, .37500000, .62500000
"Ei genval ues of rohABt = ", _53784696, .08715304, _47391098, -.09891098
"Trace of rohAB = ", 1.0000000

> # Check negative partial transpose with random defined Phi(x,vy, z):
> Check4npt (500); # using distribution L4
.l ooking for eigenvalues in rohABt for every Phi(x,y,z):"

500, " checked, ", 500, " rohAB are n.p.t., ", 0, " are p.p.t'

Appendix D: Searching a suitable phase function

It is not easy to find, with a numerical approach, a phase function with the
property thegt /ua_basséﬁly non-negative eigenvalues (if any existsat dl). In

Flgure 3 e gl:an— a saﬁ)ace obtained from the function f (a,,,....a,,,)

returnis o.:—z:' nal pnvalue of r L with respect to the phase f (x,y, 2)

asci?m 1EHossing: 146,0,0) f (0,01) and f (010) (i- €, ayp, gy,
B, i A

Figure3: Lotsof loca maxima< 0



and g, ) as parameters within [0,2p) and fixing the other 5 parameters to fixed values (see Appendix B). The values
a,,, correspond to the results for a call of the phase function f (z,y,z) used in the algorithm. Figure 3 shows the
surface with level with f (¥ =-0.15. This function has alot of local maxima |less than zero. So it was not possible to
achieve a separable state r ,, corresponding to P, (x Y, 2) (table 2) with the approach by using an adaptive
probabilistic algorithm (best result f (¥ = - 0000125604 9187 , with less than 500 evaluations). On the other hand a
search with randomly chosen parameters spread over the unit circle spawned the solution in the proof of Theorem 2,
where f (¥ =0.

Thanks to Stefan and Remo for orthographical corrections...
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